Skip to main content
Log in

Developmental variations in sesquiterpenoid biosynthesis in East Indian sandalwood tree (Santalum album L.)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The East Indian sandalwood tree, Santalum album L. is known for its fragrant heartwood and essential oil. The major bioactive principles of sandalwood oil, i.e., sesquiterpenoids (C15 isoprenoids), are known as ‘santalols’ and are globally used in medicinal, cosmetic, dietary, and aromatherapeutic applications. However, there are no available reports on the biosynthesis and metabolism of isoprenoids in this forest tree. Hence, we provide detailed insights into sesquiterpenoid metabolism across several in vitro and in vivo developmental stages. Since no molecular information was available, several genes encoding enzymes participating in early and critical steps of isoprenoid biosynthetic pathways were isolated using degenerate primers, and their expression patterns across the developmental stages were studied by semi-quantitative reverse transcription PCR. Results indicate that the isoprenoid biosynthetic pathway is differentially regulated with development and in tissue-specific manner. Accumulation of plastidial isoprenoid pigments increased with development, while the amounts of farnesylated intermediates decreased with maturation, thereby possibly indicating conversion into sesquiterpenoids. A differential expression pattern was observed for hydroxy-3-methylglutaryl coenzyme A reductase and 1-deoxyxyulose-5-phosphate synthase at the levels of transcripts and proteins, indicating post-transcriptional regulation. Transcript levels of farnesyl pyrophsophate, sesquiterpene and monoterpene synthases were quantitatively higher in callus, and lower in matured tree leaves. Sesquiterpene synthase activity across different developmental stages indicated a tissue-specific conversion and accumulation. Henceforth, the results would facilitate characterization of routes of sandalwood oil biosynthesis and for future improvement of sesquiterpenoid content in this tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACT:

Actin

DXS:

1-Deoxy-d-xylulose 5-phosphate synthase

FPP:

Farnesyl pyrophosphate

FPPS:

Farnesyl pyrophosphate synthase

GC–MS:

Gas chromatography–mass spectrometry

HPTLC:

High performance thin layer chromatography

HMG-CoAR:

3-Hydroxy-3-methylglutaryl-CoA reductase

MEP:

Methyl erythritol phosphate (mevalonate-independent) pathway

MTPS:

Monoterpene synthase

MVA:

Mevalonate-dependent pathway

sq RT-PCR:

Semi-quantitative reverse transcriptase-polymerase chain reaction

STPS:

Sesquiterpene synthase

References

  • Adams RP (1985) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, IL

    Google Scholar 

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399. doi:10.1186/1471-2164-10-399

    Article  PubMed  Google Scholar 

  • Arasada BL, Bommareddy A, Zhang X, Bremmon K, Dwivedi C (2008) Effects of alpha-santalol on proapoptotic caspases and p53 expression in UV B irradiated mouse skin. Anticancer Res 28:129–132

    PubMed  CAS  Google Scholar 

  • Bach TJ, Lichtenthaler HK, Retey J (1980) Properties of membrane-bound 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC. 1.1.1.34) from radish seedlings and some aspects of its regulation. In: Mazliak P, Benveniste P, Costes C, Douce R (eds) Biogenesis and function of plant lipids. Elsevier, Amsterdam, pp 355–362

    Google Scholar 

  • Banthorpe DV, Branch SA (1985) The biosynthesis of C5–C20 terpenoid compounds. Nat Prod Rep 2:513–524

    Article  CAS  Google Scholar 

  • Besser K, Harper A, Welsby N, Schauvinhold I, Slocombe S, Li Y, Dixon RA, Broun P (2009) Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol 149:499–514. doi:10.1104/pp.108.126276

    Article  PubMed  CAS  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Lange BM, Trethewey RN, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425. doi:10.1016/j.tplants.2004.07.004

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Steele CL, Croteau R (1997) Monoterpene synthases from grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, (4S)—limonene synthase, and (1S, 5S)-pinene synthase. J Biol Chem 272:21784–21792. doi:10.1074/jbc.272.35.21784

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci 95:4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Braun NA, Meier M, Hammerschmidt FJ (2005) New caledonian sandalwood oil—a substitute for East Indian Sandalwood Oil? J Essent Oil Res 17:477–480. doi:10.1080/10412905.2005.9698969

    Article  CAS  Google Scholar 

  • Brooker JD, Russell DW (1975) Properties of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pisum sativum seedlings. Arch Biochem Biophy 167:723–729

    Article  CAS  Google Scholar 

  • Chappell J, Nable R (1987) Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol 85:469–473

    Article  PubMed  CAS  Google Scholar 

  • Chebel AV, Koroch AR, Juliani JR, Juliani HR, Trippi VS (1998) Micropropagation of Minthostachys mollis (H.B.K.) Grieseb. and essential oil composition of clonally propagated plants. In Vitro Cell Dev Biol Plant 34:249–251. doi:stable/20064991

    Article  CAS  Google Scholar 

  • Crovadore J, Schalk M, Lefort F (2012) Selection and mass production of Santalum album L. Calli for induction of sesquiterpenes. Biotechnol Biotec Eq 26:2870–2874. doi:10.5504/bbeq.2012.0028

    Article  CAS  Google Scholar 

  • D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316. doi:10.1016/j.pbi.2005.03.012

    Article  PubMed  Google Scholar 

  • Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M (2006) The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch Biochem Biophys 454:123–136. doi:10.1016/j.abb.2006.08.006

    Article  PubMed  CAS  Google Scholar 

  • Doneva-Šapceska D, Dimitrovski A, Bojadžiev T, Milanov G, Vojnovski B (2006) Free and potentially volatile monoterpenes in grape varieties from the republic of Macedonia. Maced J Chem Chem Eng 25:51–56

    Google Scholar 

  • Duncan BD (1957) Multiple range tests for correlated and heteroscedastic means. Biometrics 13:359–364

    Article  Google Scholar 

  • Eibl H, Lands WEM (1969) A new, sensitive determination of phosphate. Anal Biochem 30:51–57

    Article  PubMed  CAS  Google Scholar 

  • Estevez JM, Cantero A, Reindl A, Reichler S, Leon P (2001) 1-Deoxyxylulose 5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909. doi:10.1074/jbc.M100854200

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Koyama T, Ogura K (1982) Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. Biochim Biophys Acta 712:716–718

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Wu J (2005) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168:487–491. doi:10.1016/j.plantsci.2004.09.012

    Article  CAS  Google Scholar 

  • Gellatly KS, Moorhead GBG, Duff SMG, Lefebvre DD, Plaxton WC (1994) Purification and characterization of a potato tuber acid phosphatase having significant phosphotyrosine phosphatase activity. Plant Physiol 106:223–232

    PubMed  CAS  Google Scholar 

  • Göpfert JC, Macnevin G, Ro DK, Spring O (2009) Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol 9:86. doi:10.1186/1471-2229-9-86

    Article  PubMed  Google Scholar 

  • Howes MJR, Simmonds MSJ, Kite GC (2004) Evaluation of the quality of sandalwood essential oils by gas chromatography-mass spectrometry. J Chromatogr A 1028:307–312. doi:10.1016/j.chroma.2003.11.093

    Article  PubMed  CAS  Google Scholar 

  • Irmisch S, Krause ST, Kunert G, Gershenzon J, Degenhardt J, Köllner T (2012) The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biol 12:84. doi:10.1186/1471-2229-12-84

    Article  PubMed  CAS  Google Scholar 

  • Jones CG, Ghisalberti EL, Plummer JA, Barbour EL (2006) Quantitative co-occurrence of sesquiterpenes; a tool for elucidating their biosynthesis in Indian sandalwood, Santalum album. Phytochemistry 67:2463–2468

    Article  PubMed  CAS  Google Scholar 

  • Jones CG, Moniodis J, Zulak KG, Scaffidi A, Plummer JA, Ghisalberti EL, Barbour EL, Bohlmann J (2011) Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J Biol Chem 286:17445–17454. doi:10.1074/jbc.M111.231787

    Article  PubMed  CAS  Google Scholar 

  • Keeling CI, Weisshaar S, Ralph SG, Jancsik S, Hamberger B, Dullat HK, Bohlmann J (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol 11:43. doi:10.1186/1471-2229-11-43

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Ito H, Hatano T, Takayasu J, Tokuda H, Nishino H, Machiguchi T, Yoshida T (2006) New antitumor sesquiterpenoids from Santalum album of Indian origin. Tetrahedron 62:6981–6989. doi:10.1016/j.tet.2006.04.072

    Article  CAS  Google Scholar 

  • Koch C, Reichling J, Schneele J, Schnitzler P (2008) Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine 15:71–78

    Article  PubMed  CAS  Google Scholar 

  • Köllner TG, Schnee C, Gershenzon J, Degenhardt J (2004) The sesquiterpene hydrocarbons of maize (Zea mays) from five groups with distinct developmental and organ-specific distributions. Phytochemistry 65:1895–1902. doi:10.1016/j.phytochem.2004.05.021

    Article  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–371

    Article  CAS  Google Scholar 

  • Lloyd DG, McCown BH (1981) Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int Plant Prop Soc Proc 30:421–427

    Google Scholar 

  • Ma X, Gang DR (2006) Metabolic profiling of in vitro micropropagated and conventionally Greenhouse grown ginger (Zingiber officinale). Phytochemistry 67:2239–2255. doi:10.1016/j.phytochem.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  • Matsuo Y, Mimaki Y (2010) Lignans from Santalum album and their cytotoxic activities. Chem Pharm Bull 58:587–590. doi:10.1248/cpb.58.587

    Article  PubMed  CAS  Google Scholar 

  • Misra BB, Dey S (2012a) Comparative phytochemical analysis and antibacterial efficacy of in vitro and in vivo extracts from East Indian sandalwood tree (Santalum album L.). Lett Appl Microbiol 55:476–486. doi:10.1111/lam.12005

    CAS  Google Scholar 

  • Misra BB, Dey S (2012b) Differential extraction and GC–MS based quantification of sesquiterpenoids from immature heartwood of East Indian sandalwood tree. J Nat Sc Res 2:29–33

    Google Scholar 

  • Ochi T, Shibata H, Higuti T, Kodama K, Kusumi T, Takaishi Y (2005) Anti-Helicobacter pylori compounds from Santalum album. J Nat Prod 68:819–824. doi:10.1021/np040188q

    Article  PubMed  CAS  Google Scholar 

  • Olofsson L, Engström A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45. doi:10.1186/1471-2229-11-45

    Article  PubMed  CAS  Google Scholar 

  • Parker W, Roberts JS, Ramage R (1967) Sesquiterpene biogenesis. Q Rev Chem Soc 21:331–363

    Article  CAS  Google Scholar 

  • Picaud S, Brodelius M, Brodelius PE (2005) Expression, purification and characterization of recombinant (E)-beta-farnesene synthase from Artemisia annua. Phytochemistry 66:961–967. doi:10.1016/j.phytochem.2005.03.027

    Article  PubMed  CAS  Google Scholar 

  • Querol J, Besumbes O, Lois LM, Boronat A, Imperial S (2001) A fluorometric assay for the determination of 1-deoxy-D-xylulose 5-phosphate synthase activity. Anal Biochem 296:101–105. doi:10.1006/abio.2001.5234

    Article  PubMed  CAS  Google Scholar 

  • Rangaswamy NS, Rao PS (1963) Experimental studies on Santalum album L. Establishment of tissue culture of endosperm. Phytomorphology 13:450–454

    Google Scholar 

  • Rodríguez-Concepción M, Gruissem W (1999) Arachidonic acid alters tomato HMG Expression and fruit growth and induces 3-hydroxy-3-methylglutary Co-enzyme A reductase-independent lycopene accumulation. Plant Physiol 119:41–48

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 1–3. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Schaller H, Grausem B, Benveniste P, Chye M-L, Tan CT, Song Y-H, Chua N-H (1995) Expression of the Hevea brasiliensis (H.B.K.) müll. Arg. 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109:761–770

    PubMed  CAS  Google Scholar 

  • Schnee C, Kollner TG, Gershenzon J, Degenhardt J (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060. doi:10.1104/pp.008326

    Article  PubMed  CAS  Google Scholar 

  • Shearer AG, Hampton R (2005) Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. EMBO J 24:149–159. doi:10.1038/sj.emboj.7600498

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Belmonte MF, van Zyl L, Craig D, Liu W, Yeung EC, Sederoff R (2004) The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J Exp Bot 55:695–709. doi:10.1093/jxb/erh074

    Article  PubMed  CAS  Google Scholar 

  • Takasawa T, Fujita M, Nabeta K, Katayama K, Komuro K (1997) In vitro biosynthesis of cadinanes by cell-free extracts of cultured cells of Heteroscyphus planus. J Chem Soc Perkin Trans 1 1997(14):2065–2070

    Google Scholar 

  • Thai L, Rush JS, Maul JE, Devarenne T, Rodgers DL, Chappell J, Waechter CJ (1999) Farnesol is utilized for isoprenoid biosynthesis in plant cells via farnesyl pyrophosphate formed by successive monophosphorylation reactions. Proc Natl Acad Sci 96:13080–13085

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tong H, Holstein SA, Hohl RJ (2005) Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 336:51–59. doi:10.1016/j.ab.2004.09.024

    Article  PubMed  CAS  Google Scholar 

  • Toroser D, Huber SC (1998) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities. Arch Biochem Biophys 355:291–300. doi:10.1006/abbi.1998.0740

    Article  PubMed  CAS  Google Scholar 

  • Valder C, Neugebauer M (2003) Western Australian sandalwood oil-new constituents of Santalum spicatum (R. Br.) A. DC. (Santalaceae). J Essent Oil Res 15:178–186

    Article  CAS  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to both the anonymous reviewers for their constructive and critical comments. The authors also thank Dr. Adinpunya Mitra, Associate Professor, Department of Agricultural & Food Engineering, IIT Kharagpur for his helpful insights during the entire course of this study. BBM received the Junior and Senior Research Fellowships from the Council of Scientific & Industrial Research (CSIR), New Delhi, India, and Research Associateship conferred by the Department of Biotechnology (DBT), Government of India. The experimental work in S. album in the author’s laboratory was supported under the project-Prospecting of novel genes and molecules of S. album L. (NGM), sponsored by DBT, Government of India.

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswapriya B. Misra.

Additional information

Communicated by M. Buckeridge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, B.B., Dey, S. Developmental variations in sesquiterpenoid biosynthesis in East Indian sandalwood tree (Santalum album L.). Trees 27, 1071–1086 (2013). https://doi.org/10.1007/s00468-013-0858-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0858-0

Keywords

Navigation