Skip to main content

Advertisement

Log in

Effect of ring width, cambial age, and climatic variables on the within-ring wood density profile of Norway spruce Picea abies (L.) Karst.

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Studying the effects of dendrometric and climatic variables on within-ring density variations needs flexible and interpretable models. We described the within-ring density profile using a piecewise linear regression and studied its dependence on (1) dendrometric variables such as cambial age (CA) and ring width (RW), and (2) climatic variables. Based on X-ray analysis of 5,191 Norway spruce rings, a six-parameter three-segmented model was fitted on each within-ring density profile. Each model parameter was related to dendrometric and climatic variables using multiple linear regressions. Then, these models were assembled in two models relating the within-ring density profile to (1) RW and CA (model M1), and (2) climatic variables (model M2). M1 showed an R 2 of 83.4 % and a residual standard error of 68.5 kg m−3. Larger rings were associated with a decrease of latewood proportion and mean ring density. Rings with high CA were characterised by high maximum ring density. M2 showed an R 2 of 60.9 % and a residual standard error of 94.9 kg m−3. Warm summers increased the maximum ring density. Years with favourable water status decreased mean ring density. The piecewise linear models allowed the classification of within-ring density profiles in three types. Considering CA and RW led to the most explicative model since RW described many processes such as silviculture or climate. Earlywood density was impacted by water status while latewood density was conditioned by both temperatures and water status. Our approach may be used for the identification of within-ring density fluctuations or to assess the effects of silviculture or global change on the within-ring density profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

D :

Within-ring density

EW:

Earlywood

TW:

Transitionwood

LW:

Latewood

CA:

Cambial age

RW:

Ring width

x:

Relative position in the ring

D min :

Parameter defining the minimum within-ring density

a 0 :

Parameter defining the slope of EW

a 1 :

Parameter defining the slope of TW

a 2 :

Parameter defining the slope of LW

D max :

Parameter defining the maximum within-ring density

x 1 :

Parameter defining the relative position of the limit between EW and TW

x 2 :

Parameter defining the relative position of the limit between TW and LW

D min0, D min1, D min2 :

Parameters of the model M1.1

a 00, a 01 :

Parameters of the model M1.2

a 10, a 11, a 12 :

Parameters of the model M1.3

D max0, D max1, D max2, D max3 :

Parameters of the model M1.4

x 10, x 11 :

Parameters of the model M1.5

x 20, x 21 :

Parameters of the model M1.6

ε :

Residuals of models

RMSE:

Root mean square error

TN:

Monthly minimum temperature

TX:

Monthly maximum temperature

SWc:

Soil water content

SWd:

Soil water deficit

References

  • Barbour RJ, Bergqvist G, Amundson C, Larsson B, Johnson JA (1997) New methods for evaluating intra-ring X-ray densitometry data: maximum derivative methods as compared to Mork’s index. In: Zhang SY et al (eds) CTIA/IUFRO international wood quality workshop proceedings, 18–22 August 1997, Québec City, Québec, pp II61–II67

  • Bontemps JD (2006) Évolution de la productivité des peuplements réguliers et monospécifiques de hêtre (Fagus sylvatica L.) et de chêne sessile (Quercus petraea Liebl.) dans la moitié Nord de la France au cours du XX° siècle. Nancy, ENGREF. PhD Dissertation

  • Bouffier L, Rozenberg P, Raffin A, Kremer A (2008) Wood density variability in successive breeding populations of maritime pine. Can J For Res 38(8):2148–2158

    Article  Google Scholar 

  • Bouriaud O, Leban JM, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25(6):651–660

    Article  PubMed  CAS  Google Scholar 

  • Brandstrom J (2001) Micro- and ultrastructural aspects of Norway spruce tracheids: a review. IAWA J 22(4):333–353

    Article  Google Scholar 

  • Bruand A, Fernandez PN, Duval O (2003) Use of class pedotransfer functions based on texture and bulk density of clods to generate water retention curves. Soil Use Manag 19(3):232–242

    Article  Google Scholar 

  • Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc Ser C Appl Stat 53(3):405–425

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • Cuny EH, Rathgeber CBK, Lebourgeois F, Fortin M, Fournier M (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32(5):612–625

    Article  PubMed  Google Scholar 

  • de Luis M, Novak K, Raventós J, Gricar J, Prislan P, Cufar K (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29(3):163–169

    Article  Google Scholar 

  • Decoux V, Varcin E, Leban JM (2004) Relationships between the intra-ring wood density assessed by X-ray densitometry and optical anatomical measurements in conifers. Consequences for the cell wall apparent density determination. Ann For Sci 61(3):251–262

    Article  Google Scholar 

  • Deleuze C, Houllier F (1998) A simple process-based xylem growth model for describing wood microdensitometric profiles. J Theor Biol 193(1):99–113

    Article  Google Scholar 

  • Deslauriers A, Morin H, Begin Y (2003) Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can J For Res 33(2):190–200

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28(6):863–871

    Article  PubMed  Google Scholar 

  • Duplat P, Tran-Ha M (1997) Modelling the dominant height growth of sessile oak (Quercus petraea Liebl) in France. Inter-regional variability and effect of the recent period (1959–1993). Ann Sci For 54(7):611–634

    Article  Google Scholar 

  • Franceschini T, Bontemps JD, Gelhaye P, Rittie D, Herve JC, Gegout JC, Leban JM (2010) Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century. Ann For Sci 67(8):816 10p

    Article  Google Scholar 

  • Franceschini T, Bontemps J-D, Leban J-M (2012a) Transient historical decrease in earlywood and latewood density and unstable sensitivity to summer temperature for Norway spruce in northeastern France. Can J For Res 42(2):219–226

    Article  Google Scholar 

  • Franceschini T, Lundqvist S-O, Bontemps J-D, Grahn T, Olsson L, Evans R, Leban J-M (2012b) Empirical models for radial and tangential fibre width in tree rings of Norway spruce in north-western Europe. Holzforschung 66(2):219–230

    Article  CAS  Google Scholar 

  • Fritts HC, Vaganov EA, Sviderskaya IV, Shashkin AV (1991) Climatic variation and tree-ring structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density. Clim Res 1:97–116

    Article  Google Scholar 

  • Fujimoto T, Kita K, Kuromaru M (2008) Genetic control of intra-ring wood density variation in hybrid larch (Larix gmelinii var. japonica × L. kaempferi) F1. Wood Sci Technol 42(3):227–240

    Article  CAS  Google Scholar 

  • Gerendiain AZ, Peltola H, Pulkkinen P, Jaatinen R, Pappinen A, Kellomaki S (2007) Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can J For Res 37(12):2600–2611

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees Struct Funct 14(7):409–414

    Article  Google Scholar 

  • Gricar J, Cufar K (2008) Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russ J Plant Physiol 55(4):538–543

    Article  CAS  Google Scholar 

  • Hughes MK (2002) Dendrochronology in climatology: the state of the art. Dendrochronologia 20(1–2):95–116

    Article  Google Scholar 

  • Hughes MK, Schweingruber FH, Cartwright D, Kelly PM (1984) July–August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data. Nature 308(5957):341–344

    Article  Google Scholar 

  • Ikonen VP, Peltola H, Wilhelmsson L, Kilpelainen A, Vaisanen H, Nuutinen T, Kellomaki S (2008) Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. For Ecol Manag 256(6):1356–1371

    Article  Google Scholar 

  • Ivkovich M, Rozenberg P (2004) A method for describing and modelling of within-ring wood density distribution in clones of three coniferous species. Ann For Sci 61(8):759–769

    Article  Google Scholar 

  • Jaakkola T, Makinen H, Saranpaa P (2005) Wood density in Norway spruce: changes with thinning intensity and tree age. Can J For Res 35(7):1767–1778

    Article  Google Scholar 

  • Jyske T, Makinen H, Saranpaa P (2008) Wood density within Norway spruce stems. Silva Fennica 42(3):439–455

    Google Scholar 

  • Jyske T, Holtta T, Makinen H, Nojd P, Lumme I, Spiecker H (2010) The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol 30(1):103–115

    Article  PubMed  Google Scholar 

  • Kantavichai R, Briggs D, Turnblom E (2010) Modeling effects of soil, climate, and silviculture on growth ring specific gravity of Douglas-fir on a drought-prone site in Western Washington. For Ecol Manag 259(6):1085–1092

    Article  Google Scholar 

  • Kirdyanov A, Hughes M, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees Struct Funct 17(1):61–69

    Article  Google Scholar 

  • Kostiainen K, Kaakinen S, Saranpaa P, Sigurdsson BD, Lundqvist SO, Linder S, Vapaavuori E (2009) Stem wood properties of mature Norway spruce after 3 years of continuous exposure to elevated CO2 and temperature. Glob Chang Biol 15(2):368–379

    Article  Google Scholar 

  • Koubaa A, Zhang SYT, Makni S (2002) Defining the transition from earlywood to latewood in black spruce based on intra-ring wood density profiles from X-ray densitometry. Ann For Sci 59(5–6):511–518

    Article  Google Scholar 

  • Leban JM (1999) Un modèle de profil microdensitométrique pour le Cèdre de l’Atlas. In: Dreyfus PH (ed) Rapport final de la convention DERF-INRA n°01.40.27/98: Modélisation: croissance, branchaison, qualité des bois et intégration logicielle, p 23–30

  • Leban JM, Houllier F (1992) Modelling the microdensitometric curves in Norway spruce taking into account intra and intertree variability. In: IUFRO All Division 5 Conference Forest Products, Nancy, 23–28 August 1992. ARBOLOR ed. Nancy, pp 309–310

  • Lebourgeois F, Breda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees Struct Funct 19(4):385–401

    Article  Google Scholar 

  • Lenz P, Cloutier A, MacKay J, Beaulieu J (2010) Genetic control of wood properties in Picea glauca: an analysis of trends with cambial age. Can J For Res 40(4):703–715

    Article  Google Scholar 

  • Lundgren C (2004) Microfibril angle and density patterns of fertilized and irrigated Norway spruce. Silva Fennica 38(1):107–117

    Google Scholar 

  • Makinen H, Saranpaa P, Linder S (2002) Wood-density variation of Norway spruce in relation to nutrient optimization and fibre dimensions. Can J For Res 32(2):185–194

    Article  Google Scholar 

  • Makinen H, Jaakkola T, Piispanen R, Saranpaa P (2007) Predicting wood and tracheid properties of Norway spruce. For Ecol Manag 241(1–3):175–188

    Article  Google Scholar 

  • Meinzer FC, Lachenbruch B, Dawson TE (2011) Size- and age-related changes in tree structure and function. Springer, Berlin

    Book  Google Scholar 

  • Moisselin J-M, Schneider M, Canellas C, Mestre O (2002) Changements climatiques en France au XXe siècle. Étude de longues séries de données homogénéisées françaises de précipitations et températures. La Météorologie 38:45–56

    Article  Google Scholar 

  • Mothe F, Duchanois G, Zannier B, Leban J-M (1998) Analyse microdensitométrique appliquée au bois : méthode de traitement des données utilisée à l’Inra-ERQB (programme Cerd). Ann Sci For 55(3):301–313

    Article  Google Scholar 

  • Neuwirth B, Esper J, Schweingruber FH, Winiger M (2004) Site ecological differences to the climatic forcing of spruce pointer years from the Lötschental, Switzerland. Dendrochronologia 21(2):69–78

    Article  Google Scholar 

  • Nilsson U (1994) Development of growth and stand structure in Picea abies stands planted at different initial densities. Scand J For Res 9(2):135–142

    Article  Google Scholar 

  • Nocetti M, Rozenberg P, Chaix G, Macchioni N (2011) Provenance effect on the ring structure of teak (Tectona grandis L.f.) wood by X-ray microdensitometry. Ann For Sci 68(8):1375–1383

    Article  Google Scholar 

  • Olano JM, Eugenio M, Garcia-Cervigon AI, Folch M, Rozas V (2012) Quantitative tracheid anatomy reveals a complex environmental control of wood structure in continental Mediterranean climate. Int J Plant Sci 173(2):137–149

    Article  Google Scholar 

  • Olesen PO (1977) The variation of the basic density level and tracheid width within the juvenile and mature wood of Norway spruce. For Tree Improv 12:1–22

    Google Scholar 

  • Park Y-ID, Spiecker H (2005) Variations in the tree-ring structure of Norway spruce (Picea abies) under contrasting climates. Dendrochronologia 23(2):93–104

    Article  Google Scholar 

  • Park Y-ID, Dallaire G, Morin H (2006) A method for multiple intra-ring demarcation of coniferous trees. Ann For Sci 63(1):9–14

    Article  Google Scholar 

  • Pernestal K, Jonsson B, Larsson B (1995) A simple-model for density of annual rings. Wood Sci Technol 29(6):441–449

    Article  Google Scholar 

  • Piedallu C, Gegout JC (2007) Multiscale computation of solar radiation for predictive vegetation modelling. Ann For Sci 64(8):899–909

    Article  Google Scholar 

  • Rathgeber CBK, Decoux V, Leban JM (2006) Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann For Sci 63(7):699–706

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL:http://www.R-project.org

  • Rossi S, Deslauriers A, Gricar J, Seo JW, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17(6):696–707

    Article  Google Scholar 

  • Rozas V, Garcia-Gonzalez I, Zas R (2011) Climatic control of intra-annual wood density fluctuations of Pinus pinaster in NW Spain. Trees Struct Funct 25(3):443–453

    Article  Google Scholar 

  • Rozenberg P, Franc A, Cahalan C (2001) Incorporating wood density in breeding programs for softwoods in Europe: a strategy and associated methods. Silvae Genet 50(1):1–7

    Google Scholar 

  • Rozenberg P, Schüte G, Ivkovich M, Bastien C, Bastien JC (2004) Clonal variation of indirect cambium reaction to within-growing season temperature changes in Douglas-fir. Forestry 77(4):257–268

    Article  Google Scholar 

  • Saint-Germain JL, Krause C (2008) Latitudinal variation in tree-ring and wood cell characteristics of Picea mariana across the continuous boreal forest in Quebec. Can J For Res 38(6):1397–1405

    Article  Google Scholar 

  • Sanchez-Vargas NM, Sanchez L, Rozenberg P (2007) Plastic and adaptive response to weather events: a pilot study in a maritime pine tree ring. Can J For Res 37(11):2090–2095

    Article  Google Scholar 

  • Schweingruber FH (1989) Tree rings. Basics and applications of dendrochronology. Kluwer, Dordrecht

    Google Scholar 

  • Turc L (1955) Le bilan d’eau des sols: relations entre les précipitations, l’évaporation et l’écoulement. Ann Agron 6(1):3–133

    Google Scholar 

  • Vargas-Hernandez J, Adams WT (1991) Genetic variation of wood density components in young coastal Douglas-fir: implications for tree breeding. Can J For Res 21(12):1801–1807

    Article  Google Scholar 

  • Wang L, Payette S, Begin Y (2002) Relationships between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec. Can J For Res 32(3):477–486

    Article  Google Scholar 

  • Wei C, Lintilhac PM (2007) Loss of stability: a new look at the physics of cell wall behavior during plant cell growth. Plant Physiol 145(3):763–772

    Article  PubMed  CAS  Google Scholar 

  • Wimmer R, Grabner M (2000) A comparison of tree-ring features in Picea abies as correlated with climate. IAWA J 21(4):403–416

    Article  Google Scholar 

  • Yasue K, Funada R, Kobayashi O, Ohtani J (2000) The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees Struct Funct 14(4):223–229

    Article  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood variation: its causes and control. Springer, Berlin Germany

    Book  Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57(6):1445–1459

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The first author wants to thank the Lorrain Region for its financial support. The authors thank two anonymous reviewers for helpful comments and suggestions on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Leban.

Additional information

Communicated by A. Braeuning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 331 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franceschini, T., Longuetaud, F., Bontemps, JD. et al. Effect of ring width, cambial age, and climatic variables on the within-ring wood density profile of Norway spruce Picea abies (L.) Karst.. Trees 27, 913–925 (2013). https://doi.org/10.1007/s00468-013-0844-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0844-6

Keywords

Navigation