Skip to main content
Log in

Hybrid aspens responses to alkalisation of soil: growth, leaf structure, photosynthetic rate and carbohydrates

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Interactions between photosynthetic rate, transpiration, content of soluble carbohydrates, leaf dimensions and structural parameters and growth of hybrid aspen (Populus tremula × P. tremuloides Michx.) were studied in relation to soil pH and chemical composition. The investigations were conducted in two plantations on former agricultural lands in North Estonia. One plantation was established on a territory influenced for a long time by alkaline cement dust pollution before plantation establishment and the other on an unpolluted territory. At pH 7.4 and higher concentrations of Ca, K, Mg, N and P in soil on the polluted area inhibition of height growth and diameter at breast height, leaf area and dry mass was observed compared to the unpolluted plantation with an optimum soil pH of 6.7. Differences in hybrid aspen leaves in the two plantations were related to the lower net photosynthetic and transpiration rates and higher starch and sucrose contents in the polluted plantation. Leaves from alkaline soil had a thicker palisade mesophyll layer and lower number of stomata at abaxial epidermis. The relatively low N concentration in leaves in the polluted area was associated with the low height and diameter at breast height of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al Afas N, Marron N, Ceulemans R (2007) Variability in Populus leaf anatomy and morphology in relation to canopy position, biomass production, and varietal taxon. Ann For Sci 64:521–532. doi:10.1051/forest:2007029

    Article  Google Scholar 

  • Bergmeyer H-U (1988) Methods of enzymatic analysis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Birk EM, Matson PA (1986) Site fertility affects seasonal carbon reserves in loblolly pine. Tree Physiol 2:17–27. doi:10.1093/treephys/2.1-2-3.17

    PubMed  CAS  Google Scholar 

  • Boussadia O, Steppe K, Zgallai H et al (2010) Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci Hortic 123:336–342. doi:10.1016/j.scienta.2009.09.023

    Article  CAS  Google Scholar 

  • Bozzola JJ, Russell LD (1992) Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Brandt CJ, Rhoades RW (1973) Effects of limestone dust accumulation on lateral growth of forest trees. Environ Pollut 4:207–213. doi:10.1016/0013-9327(73)90040-2

    Article  CAS  Google Scholar 

  • Cheng L, Fuchigami LH (2002) Growth of young apple trees in relation to reserve nitrogen and carbohydrates. Tree Physiol 22:1297–1303. doi:10.1093/treephys/22.18.1297

    Article  PubMed  CAS  Google Scholar 

  • Déjardin A, Laurans F, Arnaud D et al (2010) Wood formation in angiosperms. C R Biol 333:325–334. doi:10.1016/j.crvi.2010.01.010

    Article  PubMed  Google Scholar 

  • DesRochers A, van den Driessche R, Thomas BR (2003) Nitrogen fertilization of trembling aspen seedlings grown on soils of different pH. Can J For Res 33:552–560. doi:10.1139/X02-191

    Article  CAS  Google Scholar 

  • DesRochers A, van den Driessche R, Thomas BR (2007) The interaction between nitrogen source, soil pH, and drought in the growth and physiology of three poplar clones. Can J Bot 85:1046–1057. doi:10.1139/B07-062

    Article  CAS  Google Scholar 

  • d-Fructose and d-Glucose. Assay procedure (2005) KFRUGL 11/05 2005, Megazyme International Ireland Ltd, Bray

  • d-Glucose/d-Fructose. UV-method for the determination of d-glucose and d-fructose in foodstuffs and other materials (2000) Cat No 0 139 106. Boehringer Mannheim/R-Biopharm, Darmstadt, Germany

  • Environmental R (2007) Kunda Nordic Heidelberg Cement Group, Kunda

  • Environmental R (2008) Kunda Nordic Heidelberg Cement Group, Kunda

  • Épron D, Dreyer E (1996) Starch and soluble carbohydrates in leaves of water-stressed oak saplings. Ann For Sci 53:263–268. doi:10.1051/forest:19960209

    Article  Google Scholar 

  • Estonian Environment 1991 (1991) Environmental Report 4. Environment Data Centre, National Board of Waters and the Environment, Helsinki

    Google Scholar 

  • Estonian Environment 1995 (1996) Ministry of the Environment of Estonia. Environmental Information Centre, Tallinn

    Google Scholar 

  • Evans JR (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol 143:93–104. doi:10.1046/j.1469-8137.1999.00440.x

    Article  Google Scholar 

  • Ferris R, Nijs I, Behaeghe T, Impens I (1996) Elevated CO2 and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Ann Bot 78:489–497. doi:10.1006/anbo.1996.0146

    Article  Google Scholar 

  • Gatherum GE, Gordon JC, Broerman BFS (1967) Effects of clone and light intensity on photosynthesis, respiration and growth of aspen-poplar hybrids. Silv Genet 16:128–132

    Google Scholar 

  • Geisler-Lee J, Geisler M, Coutinho PM et al (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol 140:946–962. doi:10.1104/pp.105.072652

    Article  PubMed  CAS  Google Scholar 

  • Gilbert ME, Zwieniecki MA, Holbrook NM (2011) Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought. J Exp Bot 62:2875–2887. doi:10.1093/jxb/erq461

    Article  PubMed  CAS  Google Scholar 

  • Grechi I, Vivin Ph, Hilbert G et al (2007) Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environ Exp Bot 59:139–149. doi:10.1016/j.envexpbot.2005.11.002

    Article  CAS  Google Scholar 

  • Häikiö E, Freiwald V, Julkunen-Tiitto R et al (2009) Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula × Populus tremuloides) clones. Tree Physiol 29:53–66. doi:10.1093/treephys/tpn005

    Article  PubMed  Google Scholar 

  • Hansen J, Mǿller I (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem 68:87–94. doi:10.1016/0003-2697(75)90682-X

    Article  PubMed  CAS  Google Scholar 

  • Jouve L, Hoffmann L, Hausman J-F (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant Biol 6:74–80. doi:10.1055/s-2003-44687

    Article  PubMed  CAS  Google Scholar 

  • Jug A, Hofmann-Schielle C, Makeschin F, Rehfuess KE (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. II. Nutritional status and bioelement export by harvested shoot axes. For Ecol Manage 121:67–83. doi:10.1016/S0378-1127(98)00557-X

    Article  Google Scholar 

  • Kharouk VI, Middleton EM, Spencer SL, Rock BN, Williams DL (1995) Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem. Water Air Soil Pollut 82:483–497. doi:10.1007/BF01182858

    Article  CAS  Google Scholar 

  • King DA (1999) Juvenile foliage and the scaling of tree proportions, with emphasis on Eucalyptus. Ecology 80:1944–1954. doi:10.2307/176670

    Google Scholar 

  • Klõšeiko J (2005) Concentration of carbohydrates in conifer needles near Kunda cement plant, Estonia, nine years after reduced dust pollution. Metsanduslikud Uurim For Stud 42:87–94

    Google Scholar 

  • Klõšeiko J, Mandre M (2001) Seasonal dynamics of sugars in the leaves of Salix dasyclados and the effect of soil treatment with cement dust. Proc Estonian Acad Sci Biol Ecol 50:279–291

    Google Scholar 

  • Lal B, Ambasht RS (1982) Impact of cement dust on the mineral and energy concentration of Psidium guayava. Environ Pollut 29(4):241–247. doi:10.1016/0143-1471(82)90065-4

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Lepeduš H, Cesar V, Suver M (2003) The annual changes of chloroplast pigments content in current- and previous-year needles of Norway spruce (Picea abies L. Karst.) exposed to cement dust pollution. Acta Bot Croat 62:27–35

    Google Scholar 

  • Liberloo M, Calfapietra C, Lukac M et al (2006) Woody biomass production during the second rotation of a bio-energy Populus plantation increases in a future high CO2 world. Global Chang Biol 12:1094–1106. doi:10.1111/j.1365-2486.2006.01118.x

    Article  Google Scholar 

  • Liu G, Côté B, Fyles JW (1994) Effects of base cation fertilization on the nutrient status, free amino acids and some carbon fractions of the leaves of sugar maple (Acer saccharum Marsh.). Plant Soil 160:79–86. doi:10.1007/BF0015034

    Article  CAS  Google Scholar 

  • Lõhmus K, Lasn R (1990) Spruce and pine root structures and chemical characteristics in moderate acid soils. In: Persson H (ed) Above- and below-ground interactions in forest trees in acidified soils. Air pollution research report 32. Commission of the European Communities, Uppsala, pp 74–78

  • Lukjanova A, Mandre M (2010) Effects of alkalization of the environment on the anatomy of Scots pine (Pinus sylvestris) needles. Water Air Soil Pollut 206:13–22. doi:10.1007/s11270-009-0080-2

    Article  CAS  Google Scholar 

  • Mandre M (2000) Stress induced changes in lignin and nutrient partitioning in Picea abies (L.) Karst. Balt For 6:30–36

    Google Scholar 

  • Mandre M (2009) Vertical gradients of mineral elements in Pinus sylvestris crown in alkalised soil. Environ Monit Assess 159:111–124. doi:10.1007/s10661-008-0616-8

    Article  PubMed  CAS  Google Scholar 

  • Mandre M, Tuulmets L (1997) Pigment changes in Norway spruce induced by dust pollution. Water Air Soil Pollut 94:247–258. doi:10.1023/A:1026499523741

    CAS  Google Scholar 

  • Maňkovská B, Percy K, Karnosky DF (1998) Impact of ambient tropospheric O3, CO2 and particulates on the epicuticular waxes of aspen clones differing in O3 tolerance. Ekológia (Bratislava) 18:200–210

    Google Scholar 

  • Marron N, Dillen SY, Ceulemans R (2007) Evaluation of leaf traits for indirect selection of high yielding poplar hybrids. Environ Exp Bot 61:103–116. doi:10.1016/j.envexpbot.2007.04.002

    Article  CAS  Google Scholar 

  • Martinez-Garza C, Howe HF (2005) Development strategy or immediate responses in leaf traits of tropical tree species? Int J Plant Sci 166:41–48. doi:10.1086/425672

    Article  Google Scholar 

  • McGill DW, Ford VL, McNeel JF (2004) Early development of a species test established on surface mines thirty years post-reclamation. In: Proceedings of joint conference of 21st annual meeting of the American Society of Mining and Reclamation, 25th West Virginia surface mine drainage task force symposium, Morgantown, WV, April 18–24, 2004, pp 1227–1238

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36. doi:10.1007/s11104-004-0965-1

    Article  Google Scholar 

  • Mooney HA, Fichter K, Schulze E-D (1995) Growth, photosynthesis and storage of carbohydtares and nitrogen in Phaseolus lunatus in relation to resource availability. Oecologia 104:17–23

    Article  Google Scholar 

  • Nanos GD, Ilias IF (2007) Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters. Environ Sci Pollut Res Int 14:212–214. doi:10.1065/espr2006.08.327

    Article  PubMed  CAS  Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Parkinson KJ (1983) Porometry. In: Marshall B, Woodward FI (eds) Instrumentation for environmental physiology. Cambridge University Press, Cambridge, pp 171–191

    Google Scholar 

  • Pellis A, Laureysens I, Ceulemans R (2004) Growth and production of a short rotation coppice culture of poplar. I. Clonal differences in leaf characteristics in relation to biomass production. Biomass Bioenerg 27:9–19. doi:10.1016/j.biombioe.2003.11.001

    Article  Google Scholar 

  • Peper PJ, McPherson EG, Mori SM (2001a) Equations for predicting diameter, height, crown width, and leaf area of San Joaquin Valley street trees. J Arboricult 27:306–317

    Google Scholar 

  • Peper PJ, McPherson EG, Mori SM (2001b) Predictive equations for dimensions and leaf area of coastal southern California street trees. J Arboricult 27:169–179

    Google Scholar 

  • Peterson RB (1990) Effects of water vapor pressure deficit on photochemical and fluorescence yields in tobacco leaf tissue. Plant Physiol 92:608–614. doi:10.1104/pp.92.3.608

    Article  PubMed  CAS  Google Scholar 

  • Pinno BD, Thomas BR, Belanger N (2010) Predicting the productivity of a young hybrid poplar clone under intensive plantation management in northern Alberta, Canada using soil and site characteristics. New For 39:89–103. doi:10.1007/s11056-009-9157-4

    Article  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Rytter L, Stener L-G (2005) Productivity and thinning effects in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in southern Sweden. Forestry 78:285–295. doi:10.1093/forestry/cpi026

    Article  Google Scholar 

  • Santos LDT, Thadeo M, Iarema L, Meira RMA, Ferreira FA (2008) Foliar anatomy and histochemistry in seven species of Eucalyptus. Rev Árvore 32:769–779. doi:10.1590/S0100-67622008000400019

    Article  Google Scholar 

  • Stanturf JA, van Oosten C, Netzer DA, Coleman MD, Portwood CJ (2001) Ecology and silviculture of poplar plantations. In: Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, Ottawa, pp 153–206

    Google Scholar 

  • Steen E, Larsson K (1986) Carbohydrates in roots and rhizomes of perennial grasses. New Phytol 104:339–346. doi:10.1111/j.1469-8137.1986.tb02901.x

    Article  CAS  Google Scholar 

  • Sun J, Gibson KM, Kiirats O, Okita TW, Edwards GE (2002) Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and Rubisco in Arabidopsis starch mutants. Significance of starch and hexose. Plant Physiol 130:1573–1583. doi:10.1104/pp.010058

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Miyazawa S-I, Hanba YT (2001) Why are sun leaves thicker than shade leaves?—Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105. doi:10.1007/PL00013972

    Article  CAS  Google Scholar 

  • Timmer VR (1985) Response of a hybrid poplar clone to soil acidification and liming. Can J Soil Sci 65:727–735. doi:10.4141/cjss85-078

    Article  CAS  Google Scholar 

  • Tullus A (2010) Tree growth and the factors affecting it in young hybrid aspen plantations. Estonian University of Life Sciences, Dissertation

    Google Scholar 

  • Tullus A, Tullus H, Vares A, Kanal A (2007) Early growth of hybrid aspen (Populus × wettsteinii Hämet-Ahti) plantations on former agricultural lands in Estonia. For Ecol Manage 245:118–129. doi:10.1016/j.foreco.2007.04.006

    Article  Google Scholar 

  • Tullus A, Soo T, Tullus H et al (2008) Early growth and floristic diversity of hybrid aspen (Populus × wettsteinii Hämet-Ahti) plantations on a reclaimed opencast oil shale quarry in North-East Estonia. Oil Shale 25:57–74. doi:10.3176/oil.2008.1.07

    Article  Google Scholar 

  • Tullus A, Kanal A, Soo T, Tullus H (2010a) The impact of available water content in previous agricultural soils on tree growth and nutritional status in young hybrid aspen plantations in Estonia. Plant Soil 333:129–145. doi:10.1007/s11104-010-0330-5

    Article  CAS  Google Scholar 

  • Tullus A, Mandre M, Soo T, Tullus H (2010b) Relationships between cellulose, lignin and nutrients in the stemwood of hybrid aspen in Estonian plantations. Cellul Chem Technol 44:101–109

    Google Scholar 

  • Tullus A, Rytter L, Tullus T, Weih M, Tullus H (2012) Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand J For Res 27:10–29. doi:10(1080/02827581),2011,628949

    Article  Google Scholar 

  • Vares A, Uri V, Tullus H, Kanal A (2003) Height growth of four fast-growing deciduous tree species on former agricultural lands in Estonia. Balt For 9:2–8

    Google Scholar 

  • Wallenda T, Schaeffer C, Einig W et al (1996) Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L.] Karst.). II. Carbon metabolism in needles and mycorrhizal roots. Plant Soil 186:361–369. doi:10.1007/BF02415531

    Article  CAS  Google Scholar 

  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Chang Biol 5(8):857–867. doi:10.1046/j.1365-2486.1999.00270.x

    Article  Google Scholar 

  • Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493. doi:10.1007/BF00317710

    Google Scholar 

  • Yu Q, Pulkkinen P (2003) Genotype–environment interaction and stability in growth of aspen hybrid clones. For Ecol Manage 173:25–35. doi:10.1016/S0378-1127(01)00819-2

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Estonian Ministry of Education and Research (project No. 0170021s08) and the Estonian Science Foundation (grant No. 7298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljona Lukjanova.

Additional information

Communicated by H. Rennenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandre, M., Klõšeiko, J., Lukjanova, A. et al. Hybrid aspens responses to alkalisation of soil: growth, leaf structure, photosynthetic rate and carbohydrates. Trees 26, 1847–1858 (2012). https://doi.org/10.1007/s00468-012-0754-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0754-z

Keywords

Navigation