Skip to main content
Log in

Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The number of described pathogenic and non-pathogenic Erwinia species associated with pome fruit trees, especially pear trees, has increased in recent years, but updated comparative information about their similarities and differences is scarce. The causal agent of the fire blight disease of rosaceous plants, Erwinia amylovora, is the most studied species of this genus. Recently described species that are pathogenic to pear trees include Erwinia pyrifoliae in Korea and Japan, Erwinia spp. in Japan, and Erwinia piriflorinigrans in Spain. E. pyrifoliae causes symptoms that are indistinguishable from those of fire blight in Asian pear trees, Erwinia spp. from Japan cause black lesions on several cultivars of pear trees, and E. piriflorinigrans causes necrosis of only pear blossoms. All these novel species share some phenotypic and genetic characteristics with E. amylovora. Non-pathogenic Erwinia species are Erwinia billingiae and Erwinia tasmaniensis that have also been described on pome fruits; however, less information is available on these species. We present an updated review on the phenotypic and molecular characteristics, habitat, pathogenicity, and epidemiology of E. amylovora, E. pyrifoliae, Erwinia spp. from Japan, E. piriflorinigrans, E. billingiae, and E. tasmaniensis. In addition, the interaction of these species with pome fruit trees is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldridge P, Metzger M, Geider K (1997) Genetics of sorbitol metabolism by Erwinia amylovora and its influence on bacterial virulence. Mol Gen Genet 256:611–619

    Article  PubMed  CAS  Google Scholar 

  • Barny M-A (1995) Erwinia amylovora hrpN mutants, blocked in harpin synthesis, express a reduced virulence on hosts plants and elicit variable hypersensitive reactions on tobacco. Eur J Plant Pathol 101:333–340

    Article  Google Scholar 

  • Barny M-A, Guinebretière M-H, Marçais B, Coissac E, Paulin J-P, Laurent J (1990) Cloning of a large gene cluster involved in Erwinia amylovora CFBP 1430 virulence. Mol Microbiol 44:777–786

    Google Scholar 

  • Bellemann P, Geider K (1992) Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. J Gen Microbiol 138:931–940

    PubMed  CAS  Google Scholar 

  • Belleman P, Bereswill S, Berger S, Geider K (1994) Visualization of capsule formation by Erwinia amylovora and assays to determine amylovoran synthesis. Int J Biol Macromol 16:290–296

    Article  Google Scholar 

  • Bereswill S, Jock S, Aldridge P, Janse JD, Geider K (1997) Molecular characterization of natural Erwinia amylovora strains deficient in levan synthesis. Physiol Mol Plant Pathol 51:215–225

    Article  CAS  Google Scholar 

  • Billing E (2011) Fire blight. Why do views on host invasion by Erwinia amylovora differ? Plant Pathol 60:178–189

    Article  Google Scholar 

  • Billing E, Baker LAE (1963) Characteristics of Erwinia-like organisms found in plant material. J Appl Bacteriol 26:59–65

    Google Scholar 

  • Blachinsky D, Shtienberg D, Zamski E, Weinthal D, Manulis S (2006) Effects of pear tree physiology on fire blight progression in perennial branches and on expression of pathogenicity genes in Erwinia amylovora. Eur J Plant Pathol 116:315–324

    Article  Google Scholar 

  • Blumer C, Kleefeld A, Lehnen D, Heintz M, Dobrindt U, Nagy G, Michaelis K, Emödy L, Polen T, Rachel R, Wendisch VF, Unden G (2005) Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology 151:3287–3298

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Kim JF, Wei Z, Kolchinsky P, Charkowski AO, Conlin AK, Collmer A, Beer SV (1998) Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the virulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci USA 95:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Kim JF, Beer SV (2000) Disease-specific genes of Erwinia amylovora: keys to understanding pathogenesis and potential targets for disease control. In: Vanneste JL (ed) Fire blight. The disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, pp 163–177

    Chapter  Google Scholar 

  • Bogs J, Geider K (2000) Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J Bacteriol 182:5351–5358

    Article  PubMed  CAS  Google Scholar 

  • Boureau T, ElMaarouf-Bouteau H, Garnier A, Brisset M-N, Perino C, Pucheu I, Barny M-A (2006) DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant Microbe Interact 19:16–24

    Article  PubMed  CAS  Google Scholar 

  • Bugert P, Geider K (1995) Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol 15:917–933

    Article  PubMed  CAS  Google Scholar 

  • Cascales E (2008) The type VI secretion toolkit. EMBO Reports 98:735–741

    Article  Google Scholar 

  • Donat V, Bosca EG, Peñalver J, López MM (2007) Exploring diversity among Spanish strains of Erwinia amylovora and possible infection sources. J Appl Microbiol 103:1639–1649

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces diseases resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NlM1 gene. Plant J 20:207–215

    Article  PubMed  CAS  Google Scholar 

  • Duffy B, Dandekar AM (2008) Sorbitol has no role in fire blight as demonstrated using transgenic apple with constitutively altered content. Acta Hort 793:279–283

    CAS  Google Scholar 

  • Eastgate JA (2000) Erwinia amylovora: the molecular basis of fireblight disease. Mol Plant Pathol 1:325–329

    Article  PubMed  CAS  Google Scholar 

  • Eden-Green SJ, Billing E (1974) Fireblight. Rev Plant Pathol 53:353–365

    Google Scholar 

  • Gaudriault S, Malandrin L, Paulin J-P, Barny MA (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26:1057–1069

    Article  PubMed  CAS  Google Scholar 

  • Geider K (2000) Exopolysaccharides of Erwinia amylovora: structure, biosynthesis, regulation, role in pathogenicity of amylovoran and levan. In: Vanneste JL (ed) Fire blight. The disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, pp 117–140

    Chapter  Google Scholar 

  • Geider K (2006) Characterization of antagonistic bacteria and viral lysozime for control of fire blight. Phytopathol Pol 39:87–92

    Google Scholar 

  • Geider K, Auling G, Du Z, Jakovljevic V, Jock S, Völksch B (2006) Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evol Microbiol 56:2937–2943

    Article  PubMed  CAS  Google Scholar 

  • Geider K, Auling G, Jakovljevic V, Völksch B (2009) A polyphasic approach assigns the pathogenic Erwinia strains from diseased pear trees in Japan to Erwinia pyrifoliae. Lett Appl Microbiol 48:324–330

    Article  PubMed  CAS  Google Scholar 

  • Geider K, Jock S, Sulikowska M (2008) Screening for Erwinia billingiae and E. tasmaniensis in field isolates, differentiation by sequence analysis and effects as antagonists. Acta Hort 793:119–121

    CAS  Google Scholar 

  • Geier G, Geider K (1993) Characterization and influence on virulence of the levansucrase gene from the fireblight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 42:387–404

    Article  CAS  Google Scholar 

  • Goodman RN, Novacky A (1994) The hypersensitive reaction in plants to pathogens: a resistance phenomenon. APS Press, St. Paul

    Google Scholar 

  • Gross M, Geier G, Rudolph K, Geider K (1992) Levan and levansucrase synthesized by the fire blight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 40:371–381

    Article  CAS  Google Scholar 

  • Gowda SS, Goodman RN (1970) Movement and persistence of Erwinia amylovora in shoot, stem and root of apple. Plant Dis Report 54:576–580

    Google Scholar 

  • Hauben L, Moore ERB, Vauterin L, Steenackers M, Mergaert J, Verdonck L, Swings J (1998) Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21:384–397

    Article  PubMed  CAS  Google Scholar 

  • Hauben L, Swings J (2005) Genus XIII. Erwinia Winslow, Broadhurst, Buchanan, Krumweide, Rogers and Smith 1920, 209AL. In: Brenner DJ, Krieg NR, Staley JR, Garrity GM (eds) Bergey′s manual of systematic bacteriology, 2nd edn, vol 2, part B. Springer, New York, pp 670–679

    Google Scholar 

  • He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206

    Article  PubMed  CAS  Google Scholar 

  • Heimann MF, Worf GL (1985) Fire blight of raspberry caused by Erwinia amylovora in Wisconsin. Plant Dis 69:360

    Article  Google Scholar 

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner (eds) Genetics and genomics of Rosaceae. Series Plant Genetics and Genomics: Crops and models, vol 6. Springer, New York, pp 1–17

    Google Scholar 

  • Jakovljevic V, Jock S, Du Z, Geider K (2008) Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae. Microbial Biotech 1:416–424

    Article  CAS  Google Scholar 

  • Jock S, Langlotz C, Geider K (2005) Survival and possible spread of Erwinia amylovora and related plant-pathogenic bacteria exposed to environmental stress conditions. J Phytopathol 153:87–93

    Article  Google Scholar 

  • Johnson KB, Sawyer TL, Stockwell VO, Temple TN (2008) Implications of pathogenesis by Erwinia amylovora on rosaceous stigmas to biological control of fire blight. Phytopathology 99:128–138

    Article  Google Scholar 

  • Kim JF, Beer SV (2000) Hrp genes and harpins of Erwinia amylovora: a decade of discovery. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, Wallingford, pp 141–161

    Chapter  Google Scholar 

  • Kim W-S, Gardan L, Rhim S-L, Geider K (1999) Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int J Syst Bacteriol 49:899–906

    Article  PubMed  CAS  Google Scholar 

  • Kim W-S, Hildebrand M, Jock S, Geider K (2001a) Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora. Microbiology 147:2951–2959

    PubMed  CAS  Google Scholar 

  • Kim W-S, Jock S, Paulin J-P, Rhim S-L, Geider K (2001b) Molecular detection and differentiation of Erwinia pyrifoliae and host range analysis of the Asian pear pathogen. Plant Dis 85:1183–1188

    Article  CAS  Google Scholar 

  • Kim W-S, Schollmeyer M, Nimtz M, Wray V, Geider K (2002) Genetics of biosynthesis and structure of the capsular exopolysaccharide from the Asian pear pathogen Erwinia pyrifoliae. Microbiology 148:4015–4024

    PubMed  CAS  Google Scholar 

  • Klement Z (1982) Hypersensitivity. In: Mount MS, Lacy GS (eds) Phytopathogenic prokaryotes, vol 2. Academic Press, New York, pp 149–177

    Google Scholar 

  • Koczan JM, McGrath JM, Zhao Y, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Korba J, Šillerová J (2010) First occurrence of fire blight native infection on apricot (Prunus armeniaca) in the Czech Republic. In: Abstracts of the 12th international workshop on fire blight. Warsaw, Poland, p 107

  • Kube M, Migdoll AM, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K (2008a) The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol 10:2211–2222

    Article  PubMed  CAS  Google Scholar 

  • Kube M, Migdoll AM, Gehring I, Heitmann K, Mayer Y, Kuhl H, Knaust F, Geider K, Reinhardt R (2010) Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genom 11:393. http://www.biomedcentral.com/1471-2164/11/393

  • Kube M, Reinhardt R, Jakovljevic V, Jock S, Geider K (2008b) The genomic sequence of the fire blight antagonist Erwinia tasmaniensis compared with virulence regions of E. amylovora. Acta Hort 793:141–144

    CAS  Google Scholar 

  • López MM, Roselló M, Llop P, Ferrer S, Christen R, Gardan L (2011) Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int J Syst Evol Microbiol 61:561–567

    Article  PubMed  Google Scholar 

  • Maes M, Orye K, Bobev S, Devreese B, Van Beeumen J, De Bruyn A, Busson R, Herdewijn P, Morreel K, Messens E (2001) Influence of amylovoran production on virulence of Erwinia amylovora and different amylovoran structure in E. amylovora isolates from Rubus. Eur J Plant Pathol 107:839–844

    Article  CAS  Google Scholar 

  • Maxson-Stein K, McGhee GC, Smith JJ, Jones AL, Sundin GW (2003) Genetic analysis of a pathogenic Erwinia sp. isolated from pear in Japan. Phytopathology 93:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • McGhee GC, Schnabel EL, Maxon-Stein K, Jones B, Stromberg VK, Lacy GH, Jones AL (2002) Relatedness of chromosomal and plasmid DNAs of Erwinia pyrifoliae and Erwinia amylovora. Appl Environ Microbiol 68:6182–6192

    Article  PubMed  CAS  Google Scholar 

  • McManus PS, Jones AL (1995) Genetic fingerprinting of Erwinia amylovora strains isolated from tree-fruit crops and Rubus spp. Phytopathology 85:1547–1553

    Article  CAS  Google Scholar 

  • Mergaert J, Hauben L, Cnockaert MC, Swings J (1999) Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol 49:377–383

    Article  PubMed  Google Scholar 

  • Mizuno A, Sato S, Kawai A, Nishiyama K (2000) Taxonomic position of the causal pathogen of bacterial shoot blight of pear. J Gen Plant Pathol 66:48–58

    Article  Google Scholar 

  • Mizuno A, Tsukamoto T, Shimizu Y, Ooya H, Matsuura T, Saito N, Sato S, Kikuchi S, Uzuki T, Azegami K (2010) Occurrence of bacterial black shoot disease of European pear in Yamagata Prefecture. J Gen Plant Pathol 76:43–51

    Article  Google Scholar 

  • Mohammadi M, Geider K (2007) Autoinducer Al-2 of the fire blight pathogen Erwinia amylovora and other plant-associated bacteria. FEMS Microbiol Lett 266:34–41

    Article  PubMed  CAS  Google Scholar 

  • Mohan SK (2007) Natural incidence of shoot blight in Pluot® caused by Erwinia amylovora. In: Abstracts of the 11th international workshop on fire blight. Portland Oregon, USA, p 64

  • Mohan SK, Bijman VP (1999) Susceptibility of Prunus species to Erwinia amylovora. Acta Hort 489:145–148

    Google Scholar 

  • Mohan SK, Thomsom SV (1996) An outbreak of fire blight in plums. Acta Hort 411:73–96

    Google Scholar 

  • Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century. Using new technologies that enhance host resistance in apple. Plant Dis 87:756–765

    Article  Google Scholar 

  • Oh C-S (2005) Characterization of HrpN-interacting proteins from plants, the Hrp pathogenicity island of Erwinia amylovora, and its proteins that affect the hypersensitive response. PhD thesis, Cornell University, Ithaca, NY

  • Oh C-S, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192

    Article  PubMed  CAS  Google Scholar 

  • Oh C-S, Kim JF, Beer SV (2005) The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol 6:125–138

    Article  PubMed  CAS  Google Scholar 

  • Ordax M, Biosca EG, Wimalejeewa SC, López MM, Marco-Noales E (2009) Survival of Erwinia amylovora in mature apple fruit calyces through the viable but nonculturable (VBNC) state. J Appl Microbiol 107:106–116

    Article  PubMed  CAS  Google Scholar 

  • Ordax M, Marco-Noales E, López MM, Biosca EG (2006) Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Appl Environ Microbiol 72:3482–4388

    Article  PubMed  CAS  Google Scholar 

  • Ordax M, Marco-Noales E, López MM, Biosca EG (2010a) Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies. Res Microbiol 161:549–555

    Google Scholar 

  • Ordax M, Piquer-Salcedo JE, Sabater-Muñoz B, Biosca EG, López MM, Marco-Noales E (2010b) Transmission of Erwinia amylovora through the Mediterranean fruit fly Ceratitis capitata. In: Abstracts of the 12th international workshop on fire blight. Warsaw, Poland, p 52

  • Palacio-Bielsa A, Cambra MA, López MM, Ordax M, Peñalver J, Gorris MT, Cambra M, Marco-Noales E, Llop P, Biosca EG, Roselló M, Montesinos E, Llorente I, Badosa E, Cabrefiga J, Bonaterra A, Ruz L, Moragrega C, Francés J, Díaz C (2009) El fuego bacteriano (Erwinia amylovora). Ministerio de Medio ambiente y Medio Rural y Marino, Madrid, Spain. http://www.mapa.es/es/agricultura/pags/sanidadVegetal/Publicaciones.htm

  • Park DH, Thapa SP, Choi B-S, Kim W-S, Hur JH, Cho JM, Lim J-S, Choi I-Y, Lim CK (2011) Complete genome sequence of Japanese Erwinia strains Ejp617, a bacterial shoot blight pathogen of pear. J Bacteriol 193:586–587

    Article  PubMed  CAS  Google Scholar 

  • Paulin J-P, Samson R (1973) Le feu bactérien en France II - caractères des souches d’Erwinia amylovora (Burril) Winslow et al. 1920, isolées du foyer franco-belge. Ann Phytopathol 5:389–397

    Google Scholar 

  • Plouvier B (1963) Distribution of aliphatic polyols and cyclitols. In: Swain T (ed) Chemical plant taxonomy. Academic Press, New York, pp 313–336

    Google Scholar 

  • Powney R, Smits THM, Sawbridge T, Frey B, Blom J, Frey JE, Plummer KM, Beer SV, Lick J, Duffy B, Rodoni B (2011) Genome sequence of an Erwinia amylovora strain with pathogenicity restricted to Rubus plants. J Bacteriol 193:785–786

    Article  PubMed  CAS  Google Scholar 

  • Pusey PL, Rudell DR, Curry EA, Mattheis JP (2008) Characterization of stigma exudates in aqueous extracts from apple and pear flowers. HortScience 43:1471–1478

    Google Scholar 

  • Qazi PH, Johri S, Verma V, Khan L, Qazi GN (2004) Cloning, sequencing and partial characterisation of sorbitol transporter (srlT) gene encoding phosphotransferase system, glucitol/sorbitol-specific IIBC components of Erwinia herbicola ATCC 21998. Mol Biol Reports 31:143–149

    Article  CAS  Google Scholar 

  • Rhim S-L, Völksch B, Gardan L, Paulin J-P, Langlotz C, Kim W-S, Geider K (1999) Erwinia pyrifoliae, an Erwinia species different from Erwinia amylovora, causes a necrotic disease of Asian pear trees. Plant Pathol 48:514–520

    Article  CAS  Google Scholar 

  • Ries SM, Otterbacher AG (1977) Occurrence of fire blight on thornless blackberry in Illinois. Plant Dis Rep 61:232–235

    Google Scholar 

  • Roselló M, Ferrer S, Llop P, López MM, Christen R, Gardan L (2008) Description of Erwinia piriflorinigrans sp. nov., causal agent of pear blossom necrosis. Acta Hort 793:137–140

    Google Scholar 

  • Roselló M, Peñalver J, Llop P, Gorris MT, Chartier R, García F, Montón C, Cambra M, López MM (2006) Identification of an Erwinia sp. different from Erwinia amylovora and responsible for necrosis on pear blossoms. Can J Plant Pathol 28:30–41

    Article  Google Scholar 

  • Sebaihia M, Bocsanczy AM, Biehl BS, Quail MA, Perna NT, Glasner JD, DeClerck GA, Cartinjour S, Schneider DJ, Bentley SD, Parkhill J, Beer SV (2010) Complete genome of the plant pathogen Erwinia amylovora strain ATCC 49946. J Bacteriol 192:2020–2021

    Article  PubMed  CAS  Google Scholar 

  • Shrestha R, Koo JH, Park DH, Hwang I, Hur JH, Lim CK (2003) Erwinia pyrifoliae, a causal endemic pathogen of shoot blight of Asian pear tree in Korea. Plant Pathol J 19:294–300

    Google Scholar 

  • Shrestha R, Lee SH, Kim JE, Wilson C, Choi S-G, Park DH, Wang MH, Hur JH, Lim CK (2007) Diversity ad detection of Korean Erwinia pyrifoliae strains as determined by plasmid profiling, phylogenetic analysis and PCR. Plant Pathol 56:1023–1031

    Article  CAS  Google Scholar 

  • Sjulin TM, Beer SV (1978) Mechanism of wilt induction by amylovoran in Cotoneaster shoots and its relation to wilting of shoots infected by Erwinia amylovora. Phytopathology 68:89–94

    Article  CAS  Google Scholar 

  • Smits THM, Jaenicke S, Rezzonico F, Kamber T, Goesmann A, Frey JE, Duffy B (2010a) Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity. BMC Genom 11:2. http://www.biomedcentral.com/1471-2164/11/2

  • Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B (2010b) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 23:384–393

    Article  PubMed  CAS  Google Scholar 

  • Smits THM, Rezzonico F, Duffy B (2011) Evolutionary insights from Erwinia amylovora genomics. J Biotechnol 155:34–39

    Google Scholar 

  • Sobiczewski P, Deckers T, Pulawska J (1997) Fire blight (Erwinia amylovora): some aspects of epidemiology and control. Research Institute of Pomology and Floriculture, Skierniewice

    Google Scholar 

  • Starr MP, Cardona C, Folsom D (1951) Bacterial fire blight of raspberry. Phytopatology 41:915–919

    Google Scholar 

  • Steinberger E, Beer S (1988) Creation and complementation of pathogenicity mutants of Erwinia amylovora. Mol Plant Microbe Interact 1:135–144

    Article  Google Scholar 

  • Suhayda CG, Goodman RN (1981) Early proliferation and migration and subsequent xylem occlusion by Erwinia amylovora and fate of its extracellular polysaccharide (EPS) in apple shoots. Phytopathology 71:697–707

    Google Scholar 

  • Tanii A (1983) Fire blight like symptoms of pear and causal pathogen. In: Proceedings of the 12th plant bacterial disease workshop. Niigata, Japan (Abstr. in Japanese)

  • Tanii A, Tamura O, Ozaki M (1981) Causal pathogen of fire blight-like symptoms of pear Ann Phytopath Soc Jpn 47:102 (Abstr. in Japanese)

    Google Scholar 

  • Thomson SV (2000) Epidemiology of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 9–36

    Chapter  Google Scholar 

  • van der Zwet T, Beer SV (1995) Fire Blight: its nature, prevention and control: a practical guide to integrated disease management, 2nd edn. United States Department of Agriculture Bulletin 631, Washington

    Google Scholar 

  • van der Zwet T, Keil HL (1979) Fire blight, a bacterial disease of rosaceous plants. USDA Agriculture Handbook 510, Science and Administration USDA, Washington

    Google Scholar 

  • Vanneste JL (2000) What is fire blight? Who is Erwinia amylovora? How to control it? Epidemiology of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 1–6

    Chapter  Google Scholar 

  • Vanneste JL, Lex S, Vermeulen M, Berger F (2002) Isolation of Erwinia amylovora from blighted plums (Prunus domestica) and potato roses (Rosa rugosa). Acta Hort 590:89–94

    Google Scholar 

  • Vanneste JL, Paulin J-P, Expert D (1990) Bacteriophate Mu as a genetic tool to study Erwinia amylovora pathogenicity and hypersensitive reaction on tobacco. J Bacteriol 172:932–941

    PubMed  CAS  Google Scholar 

  • Verdonck L, Mergaert J, Rijckaert C, Swings J, Kersters K, De Ley J (1987) Genus Erwinia: a numerical analysis of phenotypic features. Int J Syst Bacteriol 37:4–18

    Article  Google Scholar 

  • Waite MB (1896) The cause and prevention of pear blight. United States Agriculture Department Yearbook 1895:295–300

    Google Scholar 

  • Wallaart RAM (1980) Distribution of sorbitol in Rosaceae. Phytochemistry 19:2603–2610

    Article  CAS  Google Scholar 

  • Wang DP, Korban SS, Zhao YF (2010) Molecular signatures of differential virulence in natural isolates of Erwinia amylovora. Phytopathology 100:192–198

    Article  PubMed  CAS  Google Scholar 

  • Wei Z-M, Beer SV (1993) HrpI of Erwinia amylovora functions in secretion of harpin and is a member of a new protein family. J Bacteriol 175:7985–7967

    Google Scholar 

  • Wei Z, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Sigee DC, Epton HAS (1990) Erwinia amylovora infection of Hawthorn blossom: III. The nectary. J Phytopathol 128:62–74

    Article  Google Scholar 

  • Young JM, Saddler GS, Takikawa Y, De Boer SH, Vauterin L, Gardan L, Gvozdyak RI, Stead DE (1996) Names of plant pathogenic bacteria 1864–1995. Rev Plant Pathol 75:721–763

    Google Scholar 

  • Zhang Y, Geider K (1999) Molecular analysis of the rlsA gene regulating levan production by the fireblight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 54:187–201

    Article  CAS  Google Scholar 

  • Zhao YF, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187:8088–8103

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, He S-Y, Sundin GW (2006) The Erwinia amylovora avrRpt2 EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant Microbe Interact 19:644–654

  • Zhao Y, Wang D, Nakka S, Sundin GW, Korban SS (2009) Systems level analysis of two-component signal transduction systems in Erwinia amylovora: role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genom 10:245. doi:10.1186/1471-2164-10-245. http://www.biomedcentral.com/1471-2164/10/24

Download references

Acknowledgments

The authors thank the project AGL2008-05723-C02-01/AGR from Spain and COST Action 864 Pome Fruit Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Palacio-Bielsa.

Additional information

Communicated by D. Treutter.

A contribution to the Special Issue: Pome Fruit Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacio-Bielsa, A., Roselló, M., Llop, P. et al. Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees 26, 13–29 (2012). https://doi.org/10.1007/s00468-011-0644-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0644-9

Keywords

Navigation