, Volume 24, Issue 5, pp 969-974
Date: 25 Jul 2010

Allometric estimation of total leaf area in the neotropical palm Euterpe oleracea at La Selva, Costa Rica

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We estimated the magnitude of the total leaf area of the neotropical palm Euterpe oleracea and examined its allometry relative to the variation in stem height and diameter at La Selva Biological Station in Costa Rica. The allometric relationships between frond leaf area and frond length (from tip to base), and between frond leaf area and number of leaflets, were determined by natural logarithmic regressions to estimate the total area of each frond. Palm total leaf area was then estimated by adding the area of the composing fronds. We fit 14 separate regression models that related one or more of the morphological variables (number of fronds, diameter at breast height, stem height) to the total leaf area. Our results show that palm total leaf area is directly proportional to the number of fronds and palm size as reflected in stem height and diameter. Eight out of the 14 models had r 2 values of >0.90 and incorporated a diverse combination of predictor variables. Simple linear regression models were more congruent with the observed values of total leaf area, whereas natural logarithmic models overestimated the value of total leaf area for large palms. Both approaches show a high degree of association among morphological characters in E. oleracea supporting the hypothesis that palms behave like unitary organisms, and are morphologically constrained by the lack of secondary meristems. To afford attaining canopy heights, woody palms need to show a high degree of phenotypic integration, shaping their growth and allometric relationships to match spatial and temporal changes in resources.

Communicated by M. Adams.