Skip to main content
Log in

Biomarkers and targeted new therapies for IgA nephropathy

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

IgA nephropathy (IgAN) has variable clinical presentation and outcome. There is a need to identify children who have the potential to progress to end stage renal disease (ESRD). Biomarkers related to the pathogenetic process of IgAN can detect risk factors and identify targets for new therapies. Galactose-deficient IgA1 (Gd-IgA1) is a specific biomarker of IgAN and could be the first treatment target. In experimental mice, reduction of IgA1 deposits and hematuria was observed after treatment with a bacterial protease that selectively cleaves human IgA1. Glycan-targeted drugs that may act to neutralize Gd-IgA1 inhibit abnormal enzymatic glycosylation of IgA1 or deplete cells producing Gd-IgA1. The autoimmune response to Gd-IgA1 produces autoantibodies that are sensitive and specific biomarkers of IgAN development and progression and suggests the possible benefits of anti-B cell therapies directed against CD20, B-cell activating factor (BAFF), or B cell receptor, and also proteasome inhibitors. The activation of complement in IgAN offers new biomarkers and the rationale for using complement inhibitors, including eculizumab. Renal pathological features represent sensitive biomarkers of added value over clinical data and may drive steroid therapy in selected cases. Finally, the hypothesis of the involvement of intestinal mucosal immunity in the pathogenesis of IgAN suggests the possibility of avoiding the systemic effect of steroid. Enteric budesonide targeting Peyer’s patches at the ileocecal junction is an interesting option that has provided some preliminary favorable results in IgAN. In conclusion, the identification of new biomarkers is a promising area for therapies targeting IgAN in patients at risk of progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Kar Neng Lai, Sydney C. W. Tang, … Richard J. Glassock

References

  1. Coppo R (2008) Pediatric IgA nephropathy: clinical and therapeutic perspectives. Semin Nephrol 28:18–26

    Article  PubMed  Google Scholar 

  2. Wyatt RJ, Julian BA (2013) IgA nephropathy. N Engl J Med 368:2402–2414

    Article  CAS  PubMed  Google Scholar 

  3. Shima Y, Nakanishi K, Hama T, Mukaiyama H, Togawa H, Sako M, Kaito H, Nozu K, Tanaka R, Iijima K, Yoshikawa N (2013) Spontaneous remission in children with IgA nephropathy. Pediatr Nephrol 28:71–76

    Article  PubMed  Google Scholar 

  4. Coppo R, Troyanov S, Camilla R, Hogg RJ, Cattran DC, Cook HT, Feehally J, Roberts IS, Amore A, Alpers CE, Barratt J, Berthoux F, Bonsib S, Bruijn JA, D’Agati V, D’Amico G, Emancipator SN, Emma F, Ferrario F, Fervenza FC, Florquin S, Fogo AB, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Li LS, Li PK, Liu ZH, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H (2010) The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int 77:921–927

    Article  CAS  PubMed  Google Scholar 

  5. Haas M, Rahman MH, Cohn RA (2008) IgA nephropathy in children and adults: comparison of histologic features and clinical outcomes. Nephrol Dial Transplant 23:2537–2545

    Article  PubMed  Google Scholar 

  6. Coppo R, Troyanov S, Bellur S, Cattran D, Cook HT, Feehally J, Roberts IS, Morando L, Camilla R, Tesar V, Lunberg S, Gesualdo L, Emma F, Rollino C, Amore A, Praga M, Feriozzi S, Segoloni G, Pani A, Cancarini G, Durlik M, Moggia E, Mazzucco G, Giannakakis C, Honsova E, Sundelin BB, Di Palma AM, Ferrario F, Gutierrez E, Asunis AM, Barratt J, Tardanico R, Perkowska-Ptasinska A; VALIGA study of the ERA-EDTA Immunonephrology Working Group (2014) Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int 86:828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ronkainen J, Ala-Houhala M, Autio-Harmainen H, Jahnukainen T, Koskimies O, Merenmies J, Mustonen J, Ormälä T, Turtinen J, Nuutinen M (2006) Long-term outcome 19 years after childhood IgA nephritis: a retrospective cohort study. Pediatr Nephrol 21:1266–1273

    Article  PubMed  Google Scholar 

  8. Hastings MC, Delos Santos NM, Wyatt RJ (2007) Renal survival in pediatric patients with IgA nephropathy. Pediatr Nephrol 22:317–318

    Article  PubMed  Google Scholar 

  9. Fassbinder W, Brunner FP, Brynger H, Ehrich JH, Geerlings W, Raine AE, Rizzoni G, Selwood NH, Tufveson G, Wing AJ (1991) Combined report on regular dialysis and transplantation in Europe, XX, 1989. Nephrol Dial Transplant 6 [Suppl 1]:5–35

    Google Scholar 

  10. Hastings MC, Moldoveanu Z, Suzuki H, Berthoux F, Julian BA, Sanders JT, Renfrow MB, Novak J, Wyatt RJ (2013) Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Exp Opin Med Diagn 7:615–627

    Article  CAS  Google Scholar 

  11. Hwang VJ, Ulu A, van Hoorebeke J, Weiss RH (2014) Biomarkers in IgA nephropathy. Biomark Med 8:1263–1277

    Article  CAS  PubMed  Google Scholar 

  12. Moresco RN, Speeckaert MM, Delanghe JR (2015) Diagnosis and monitoring of IgA nephropathy: the role of biomarkers as an alternative to renal biopsy. Autoimmun Rev 14:847–853

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, Wyatt RJ, Scolari F, Mestecky J, Gharavi AG, Julian BA (2011) The pathophysiology of IgA nephropathy. J Am Soc Nephrol 22:1795–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy SR, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:1148–1154

    Article  CAS  PubMed  Google Scholar 

  15. Hastings MC, Afshan S, Sanders JT, Kane O, Eison TM, Lau KK, Moldoveanu Z, Julian BA, Novak J, Wyatt RJ (2012) Serum galactose-deficient IgA1 level is not associated with proteinuria in children with IgA nephropathy. Int J Nephrol 2012:315467

    PubMed  PubMed Central  Google Scholar 

  16. Yanagawa H, Suzuki H, Suzuki Y, Kiryluk K, Gharavi AG, Matsuoka K, Makita Y, Julian BA, Novak J, Tomino Y (2014) A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS One 23(9):e98081

    Article  Google Scholar 

  17. Coppo R (2015) A new monoclonal antibody for detecting degalactosylated IgA1 as serum biomarker of IgA nephropathy. Nephrol Dial Transplant 30:1234–1236

    Article  PubMed  Google Scholar 

  18. Yasutake J, Suzuki Y, Suzuki H, Hiura N, Yanagawa H, Makita Y, Kaneko E, Tomino Y (2015) Novel lectin-independent approach to detect galactose-deficient IgA1 inIgA nephropathy. Nephrol Dial Transplant 30:1315–1321

    Article  PubMed  PubMed Central  Google Scholar 

  19. Coppo R, Peruzzi L, Amore A, Piccoli A, Cochat P, Stone R, Kirschstein M, Linné T (2007) IgACE: a placebo-controlled, randomized trial of angiotensin-converting enzyme inhibitors in children and young people with IgA nephropathy and moderate proteinuria. J Am Soc Nephrol 18:1880–1888

    Article  CAS  PubMed  Google Scholar 

  20. Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, Mestecky J, Novak J, Julian BA (2008) Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19:1008–1014

    Article  PubMed  PubMed Central  Google Scholar 

  21. Berthelot L, Robert T, Vuiblet V, Tabary T, Braconnier A, Dramé M, Toupance O, Rieu P, Monteiro RC, Touré F (2015) Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int 88:815–822

    Article  CAS  PubMed  Google Scholar 

  22. Camilla R, Suzuki H, Daprà V, Loiacono E, Peruzzi L, Amore A, Ghiggeri GM, Mazzucco G, Scolari F, Gharavi AG, Appel GB, Troyanov S, Novak J, Julian BA, Coppo R (2011) Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol 6:1903–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lechner SM, Papista C, Chemouny JM, Berthelot L, Monteiro RC (2016) Role of IgA receptors in the pathogenesis of IgA nephropathy. J Nephrol 29:5–11

    Article  CAS  PubMed  Google Scholar 

  24. Hiki Y, Ito A, Yamamoto Y, Yamamoto K, Iwase H (2011) IgA nephropathy and aberrant glycosylation of tonsillar, serum and glomerular IgA1. Adv Otorhinolaryngol 72:68–70

    PubMed  Google Scholar 

  25. Lamm ME, Emancipator SN, Robinson JK, Yamashita M, Fujioka H, Qiu J, Plaut AG (2008) Microbial IgA protease removes IgA immune complexes from mouse glomeruli in vivo: potential therapy for IgA nephropathy. Am J Pathol 172:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xie LS, Huang J, Qin W, Fan JM (2010) Immunoglobulin A1 protease: a new therapeutic candidate for immunoglobulin a nephropathy. Nephrology (Carlton) 15:584–586

    Article  CAS  Google Scholar 

  27. Lechner SM, Abbad L, Boedec E, Papista C, Le Stang MB, Moal C, Maillard J, Jamin A, Bex-Coudrat J, Wang Y, Li A, Martini PG, Monteiro RC, Berthelot L (2016) IgA1 protease treatment reverses mesangial deposits and hematuria in a model of IgA nephropathy. J Am Soc Nephrol. doi:10.1681/ASN.2015080856

    Google Scholar 

  28. Suzuki Y, Suzuki H, Yasutake J, Tomino Y (2015) Paradigm shift in activity assessment of IgA nephropathy - optimizing the next generation of diagnostic and therapeutic maneuvers via glycan targeting. Expert Opin Biol Ther 15:583–593

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J (2009) Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119:1668–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, Tomino Y, Julian BA, Novak J (2012) Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 23:1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blüml S, McKeever K, Ettinger R, Smolen J, Herbst R (2013) B-cell targeted therapeutics in clinical development. Arthritis Res Ther 15(1):S4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xin G, Shi W, Xu LX, Su Y, Yan LJ, Li KS (2013) Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J Nephrol 26:683–690

    Article  CAS  PubMed  Google Scholar 

  33. McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, Ward L, Lawson MA, Macpherson AJ, McCoy KD, Pei Y, Novak L, Lee JY, Julian BA, Novak J, Ranger A, Gommerman JL, Browning JL (2012) Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest 121:3991–4002

    Article  Google Scholar 

  34. Coppo R, Camilla R, Alfarano A, Balegno S, Mancuso D, Peruzzi L, Amore A, Dal Canton A, Sepe V, Tovo P (2009) Upregulation of the immunoproteasome in peripheral blood mononuclear cells of patients with IgA nephropathy. Kidney Int 75:536–541

    Article  CAS  PubMed  Google Scholar 

  35. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei B, Pei G (2010) microRNAs: critical regulators in Th17 cells and players in diseases. Cell Mol Immunol 7:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schena FP, Serino G, Sallustio F (2014) MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring. Nephrol Dial Transplant 29:755–763

    Article  CAS  PubMed  Google Scholar 

  38. Serino G, Sallustio F, Curci C, Cox SN, Pesce F, De Palma G, Schena FP (2015) Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol Dial Transplant 30:1132–1139

    Article  PubMed  Google Scholar 

  39. Serino G, Pesce F, Sallustio F, De Palma G, Cox SN, Curci C, Zaza G, Lai KN, Leung JC, Tang SC, Papagianni A, Stangou M, Goumenos D, Gerolymos M, Takahashi K, Yuzawa Y, Maruyama S, Imai E, Schena FP (2015) In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney Int. 89(3):683–692

    Article  Google Scholar 

  40. Schena FP, Sallustio F, Serino G (2015) microRNAs in glomerular diseases from pathophysiology to potential treatment target. Clin Sci (Lond) 128:775–788

    Article  Google Scholar 

  41. Kalantari S, Rutishauser D, Samavat S, Nafar M, Mahmudieh L, Rezaei-Tavirani M, Zubarev RA (2013) Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PLoS One 8:e80830

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, Novak J (2015) Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol 26:1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daha MR, van Kooten C (2016) Role of complement in IgA nephropathy. J Nephrol 29:1–4

    Article  CAS  PubMed  Google Scholar 

  44. Espinosa M, Ortega R, Sánchez M, Segarra A, Salcedo MT, González F, Camacho R, Valdivia MA, Cabrera R, López K, Pinedo F, Gutierrez E, Valera A, Leon M, Cobo MA, Rodriguez R, Ballarín J, Arce Y, García B, Muñoz MD, Praga M (2014) Spanish group for study of glomerular diseases (GLOSEN). association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol 9:897–904

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schmitt R, Ståhl AL, Olin AI, Kristoffersson AC, Rebetz J, Novak J, Lindahl G, Karpman D (2014) The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M Protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy. J Immunol 193:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, Fasel D, Lata S, Prakash S, Shapiro S, Fischman C, Snyder HJ, Appel G, Izzi C, Viola BF, Dallera N, Del Vecchio L, Barlassina C, Salvi E, Bertinetto FE, Amoroso A, Savoldi S, Rocchietti M, Amore A, Peruzzi L, Coppo R, Salvadori M, Ravani P, Magistroni R, Ghiggeri GM, Caridi G, Bodria M, Lugani F, Allegri L, Delsante M, Maiorana M, Magnano A, Frasca G, Boer E, Boscutti G, Ponticelli C, Mignani R, Marcantoni C, Di Landro D, Santoro D, Pani A, Polci R, Feriozzi S, Chicca S, Galliani M, Gigante M, Gesualdo L, Zamboli P, Battaglia GG, Garozzo M, Maixnerová D, Tesar V, Eitner F, Rauen T, Floege J, Kovacs T, Nagy J, Mucha K, Pączek L, Zaniew M, Mizerska-Wasiak M, Roszkowska-Blaim M, Pawlaczyk K, Gale D, Barratt J, Thibaudin L, Berthoux F, Canaud G, Boland A, Metzger M, Panzer U, Suzuki H, Goto S, Narita I, Caliskan Y, Xie J, Hou P, Chen N, Zhang H, Wyatt RJ, Novak J, Julian BA, Feehally J, Stengel B, Cusi D, Lifton RP, Gharavi AG (2014) Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46:1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosenblad T, Rebetz J, Johansson M, Békássy Z, Sartz L, Karpman D (2014) Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr Nephrol 29:2225–2228

    Article  PubMed  Google Scholar 

  48. Ring T, Pedersen BB, Salkus G, Goodship TH (2015) Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J 8:489–491

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rojas-Rivera J, Fernández-Juárez G, Praga M (2015) Rapidly progressive IgA nephropathy: a form of vasculitis or a complement-mediated disease? Clin Kidney J 8:477–481

    Article  PubMed  PubMed Central  Google Scholar 

  50. Coppo R, D’Amico G (2005) Factors predicting progression of IgA nephropathies. J Nephrol 18:503–512

    PubMed  Google Scholar 

  51. Bartosik LP, Lajoie G, Sugar L, Cattran DC (2001) Predicting progression in IgA nephropathy. Am J Kidney Dis 38:728–735

    Article  CAS  PubMed  Google Scholar 

  52. Reich HN, Troyanov S, Scholey JW, Cattran DC, Registry TG (2007) Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol 18:3177–3183

    Article  CAS  PubMed  Google Scholar 

  53. Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, Bruijn JA, D’Agati V, D’Amico G, Emancipator S, Emma F, Ferrario F, Fervenza FC, Florquin S, Fogo A, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Leung CB, Li LS, Li PK, Liu ZH, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76:534–545

    Article  PubMed  Google Scholar 

  54. Tesar V, Troyanov S, Bellur S, Verhave JC, Cook HT, Feehally J, Roberts IS, Cattran D, Coppo R, VALIGA study of the ERA-EDTA Immunonephrology Working Group (2015) Corticosteroids in IgA nephropathy: a retrospective analysis from the VALIGA study. J Am Soc Nephrol 26:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barbour SJ, Espino-Hernandez G, Reich HN, Coppo R, Roberts IS, Feehally J, Herzenberg AM, Cattran DC; VALIGA; Oxford Derivation and North American Validation (2016) The MEST score provides earlier risk prediction in IgA nephropathy. Kidney Int 89:167–175

    Article  CAS  PubMed  Google Scholar 

  56. Coppo R (2014) The intestine-renal connection in IgA nephropathy. Nephrol Dial Transplant 30:360–366

    Article  PubMed  Google Scholar 

  57. Smerud HK, Bárány P, Lindström K, Fernström A, Sandell A, Påhlsson P, Fellström B (2011) New treatment for IgA nephropathy: enteric budesonide targeted to the ileocecal region ameliorates proteinuria. Nephrol Dial Transplant 26:3237–3242

    Article  CAS  PubMed  Google Scholar 

  58. Lebreton C, Ménard S, Abed J, Moura IC, Coppo R, Dugave C, Monteiro RC, Fricot A, Traore MG, Griffin M, Cellier C, Malamut G, Cerf-Bensussan N, Heyman M (2012) Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 143:698–707

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna Coppo.

Ethics declarations

Conflicts of interest

The author declares that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppo, R. Biomarkers and targeted new therapies for IgA nephropathy. Pediatr Nephrol 32, 725–731 (2017). https://doi.org/10.1007/s00467-016-3390-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3390-9

Keywords

Navigation