Skip to main content

Advertisement

Log in

Distinct urinary lipid profile in children with focal segmental glomerulosclerosis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Focal segmental glomerulosclerosis (FSGS) accounts for the majority of new-onset end-stage renal disease (ESRD) during adolescence. FSGS treatment is a great challenge for pediatric nephrologists due to intertwined molecular pathways underlining its complex pathophysiology. There is emerging evidence showing that perturbed lipid metabolism plays a role in the pathophysiology of FSGS.

Methods

We postulate that the nephrotic milieu in FSGS differs from minimal change disease (MCD) and that urinary lipidomics can be used as a tool for early diagnosis of FSGS. We explored the urinary lipid profile of patients with FSGS and MCD using an unbiased metabolomics approach.

Results

We discovered a unique lipid signature characterized by increased concentration of fatty acid (FA) and lysophosphatidylcholines (LPC) and a decrease in urinary concentration of phosphatidylcholine (PC) in patients with FSGS. These findings indicate increased metabolism of membrane phospholipid PC by phospholipase A2 (PLA2), resulting in higher urinary concentrations of LPC and FA.

Conclusions

We propose that increased PC by-products can be used as a biomarker to diagnose FSGS and shed light on the mechanism of tubular and podocyte damage. Validation of identified urinary lipids as a biomarker in predicting the diagnosis and progression of FSGS in a larger patient population is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. (2003) USRDS: United States Renal Data System. Am J Kidney Dis 42:1–230

  2. Ferris ME, Gipson DS, Kimmel PL, Eggers PW (2006) Trends in treatment and outcomes of survival of adolescents initiating end-stage renal disease care in the United States of America. Pediatr Nephrol 21:1020–1026

    Article  PubMed  Google Scholar 

  3. Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Guo H, Gustafson S, Heubner B, Lamb K, Li S, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L (2012) United States renal data system 2011 annual data report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis 59(Suppl 1):A7, e1-420

    Article  PubMed  Google Scholar 

  4. McDonald SP, Craig JC (2004) Long-term survival of children with end-stage renal disease. N Engl J Med 350:2654–2662

    Article  CAS  PubMed  Google Scholar 

  5. (2012) USRDS: United States Renal Data System pp 1-14. Available from http://www.usrds.org

  6. Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, Arthur JM (2007) Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol 18:913–922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Khurana M, Traum AZ, Aivado M, Wells MP, Guerrero M, Grall F, Libermann TA, Schachter AD (2006) Urine proteomic profiling of pediatric nephrotic syndrome. Pediatr Nephrol 21:1257–1265

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fornoni A, Merscher S, Kopp JB (2014) Lipid biology of the podocyte--new perspectives offer new opportunities. Nat Rev Nephrol 10:379–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Merscher S, Fornoni A (2014) Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol 5:1–11

    Google Scholar 

  10. Ghiggeri GM, Ginevri F, Candiano G, Oleggini R, Perfumo F, Queirolo C, Gusmano R (1987) Characterization of cationic albumin in minimal change nephropathy. Kidney Int 32:547–553

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed Central  PubMed  Google Scholar 

  12. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Veselkov KA, Vingara LK, Masson P, Robinette SL, Want E, Li JV, Barton RH, Boursier-Neyret C, Walther B, Ebbels TM, Pelczer I, Holmes E, Lindon JC, Nicholson JK (2011) Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal Chem 83:5864–5872

    Article  CAS  PubMed  Google Scholar 

  15. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0--a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Suzuki Y, Fausto A, Hruska KA, Avioli LV (1987) Stimulation of phosphatidylcholine biosynthesis in diabetic hypertrophic kidneys. Endocrinology 120:595–601

    Article  CAS  PubMed  Google Scholar 

  17. Zhao YY, Cheng XL, Lin RC (2014) Lipidomics applications for discovering biomarkers of diseases in clinical chemistry. Int Rev Cell Mol Biol 313:1–26

    Article  PubMed  Google Scholar 

  18. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U (2014) Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 55:561–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Stadler K, Goldberg IJ, Susztak K (2015) The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr Diab Rep 15:40

    Article  PubMed  Google Scholar 

  20. Martinez-Garcia C, Izquierdo A, Velagapudi V, Vivas Y, Velasco I, Campbell M, Burling K, Cava F, Ros M, Oresic M, Vidal-Puig A, Medina-Gomez G (2012) Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model. Dis Model Mech 5:636–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sas KM, Nair V, Byun J, Kayampilly P, Zhang H, Saha J, Brosius FC III, Kretzler M, Pennathur S (2015) Targeted lipidomic and transcriptomic analysis identifies dysregulated renal ceramide metabolism in a mouse model of diabetic kidney disease. J Proteom Bioinform S14

  22. Jia L, Wang C, Zhao S, Lu X, Xu G (2007) Metabolomic identification of potential phospholipid biomarkers for chronic glomerulonephritis by using high performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 860:134–140

    Article  CAS  PubMed  Google Scholar 

  23. Dada N, Kim NW, Wolfert RL (2002) Lp-PLA2: an emerging biomarker of coronary heart disease. Expert Rev Mol Diagn 2:17–22

    Article  CAS  PubMed  Google Scholar 

  24. Suchindran S, Rivedal D, Guyton JR, Milledge T, Gao X, Benjamin A, Rowell J, Ginsburg GS, McCarthy JJ (2010) Genome-wide association study of Lp-PLA(2) activity and mass in the Framingham Heart Study. PLoS Genet 6:e1000928

    Article  PubMed Central  PubMed  Google Scholar 

  25. Madesh M, Balasubramanian KA (1997) Activation of liver mitochondrial phospholipase A2 by superoxide. Arch Biochem Biophys 346:187–192

    Article  CAS  PubMed  Google Scholar 

  26. Kohjimoto Y, Honeyman TW, Jonassen J, Gravel K, Kennington L, Scheid CR (2000) Phospholipase A2 mediates immediate early genes in cultured renal epithelial cells: possible role of lysophospholipid. Kidney Int 58:638–646

    Article  CAS  PubMed  Google Scholar 

  27. Zager RA, Sacks BM, Burkhart KM, Williams AC (1999) Plasma membrane phospholipid integrity and orientation during hypoxic and toxic proximal tubular attack. Kidney Int 56:104–117

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura H, Nemenoff RA, Gronich JH, Bonventre JV (1991) Subcellular characteristics of phospholipase A2 activity in the rat kidney. Enhanced cytosolic, mitochondrial, and microsomal phospholipase A2 enzymatic activity after renal ischemia and reperfusion. J Clin Invest 87:1810–1818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Nguyen VD, Cieslinski DA, Humes HD (1988) Importance of adenosine triphosphate in phospholipase A2-induced rabbit renal proximal tubule cell injury. J Clin Invest 82:1098–1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Matthys E, Patel Y, Kreisberg J, Stewart JH, Venkatachalam M (1984) Lipid alterations induced by renal ischemia: pathogenic factor in membrane damage. Kidney Int 26:153–161

    Article  CAS  PubMed  Google Scholar 

  31. Hara S, Kobayashi N, Sakamoto K, Ueno T, Manabe S, Takashima Y, Hamada J, Pastan I, Fukamizu A, Matsusaka T, Nagata M (2015) Podocyte Injury-Driven Lipid Peroxidation Accelerates the Infiltration of Glomerular Foam Cells in Focal Segmental Glomerulosclerosis. Am J Pathol 185:2118–2131

    Article  CAS  PubMed  Google Scholar 

  32. Riederer M, Lechleitner M, Hrzenjak A, Koefeler H, Desoye G, Heinemann A, Frank S (2011) Endothelial lipase (EL) and EL-generated lysophosphatidylcholines promote IL-8 expression in endothelial cells. Atherosclerosis 214:338–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Matsumoto T, Kobayashi T, Kamata K (2007) Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14:3209–3220

    Article  CAS  PubMed  Google Scholar 

  34. Kume N, Gimbrone MA Jr (1994) Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest 93:907–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sieber J, Jehle AW (2014) Free Fatty acids and their metabolism affect function and survival of podocytes. Front Endocrinol 5:186

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sam Coffey for his technical assistance.

This work was supported by a pilot and feasibility grant (EE) from the NIH (P50 DK096418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Erkan.

Ethics declarations

Ethical statement

This study protocol was approved by Cincinnati Children’s Hospital IRB Committee and all human studies were performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. Signed consent to provide urine for participation in this study was obtained from the parents of the patients and study subjects when appropriate.

Conflict of interest

The authors declare there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkan, E., Zhao, X., Setchell, K. et al. Distinct urinary lipid profile in children with focal segmental glomerulosclerosis. Pediatr Nephrol 31, 581–588 (2016). https://doi.org/10.1007/s00467-015-3239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3239-7

Keywords

Navigation