Skip to main content

Advertisement

Log in

Pathophysiology and clinical presentations of salt-losing tubulopathies

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

At least three renal tubular segments are involved in the pathophysiology of salt-losing tubulopathies (SLTs). Whether the pathogenesis starts either in the thick ascending limb of the loop of Henle (TAL) or in the distal convoluted tubule (DCT), it is the function of the downstream-localized aldosterone sensitive distal tubule (ASDT) to contribute to the adaptation process. In isolated TAL defects (loop disorders) ASDT adaptation is supported by upregulation of DCT, whereas in DCT disorders the ASDT is complemented by upregulation of TAL function. This upregulation has a major impact on the clinical presentation of SLT patients. Taking into account both the symptoms and signs of primary tubular defect and of the secondary reactions of adaptation, a clinical diagnosis can be made that eventually leads to an appropriate therapy. In addition to salt wasting, as occurs in all SLTs, characteristic features of loop disorders are hypo- or isosthenuric polyuria and hypercalciuria, whereas characteristics of DCT disorders are hypokalemia and (symptomatic) hypomagnesemia. In both SLT categories, replacement of urinary losses is the primary goal of treatment. In loop disorders COX inhibitors are also recommended to mitigate polyuria, and in DCT disorders magnesium supplementation is essential for effective treatment. Of note, the combination of a salt- and potassium-rich diet together with an adequate fluid intake is always the basis of long-term treatment in all SLTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Ellison DH (2012) Adaption in Gitelman syndrome: „we just want to pump you up“. Clin J Am Soc Nephrol 7:379–382

    Article  CAS  PubMed  Google Scholar 

  2. Seyberth HW, Schlingmann KP (2011) Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol 26:1789–1802

    Article  PubMed Central  PubMed  Google Scholar 

  3. Zeidel ML, Hoenig MP, Palevsky PM (2014) A new CJASN series: renal physiology for the clinician. Clin J Am Soc Nephrol 9:1271

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hoenig MP, Zeidel ML (2014) Homeostasis, the milieu intérieur, and the wisdom of the nephron. Clin J Am Soc Nephrol 9:1272–1281

  5. Mount DB (2014) Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol 9:1974–1986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Subramanya AR, Ellison DH (2014) Distal convoluted tubule. Clin J Am Soc Nephrol 9:2147–2163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE (2015) Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10:135–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Roy A, Al-Bataineh MM, Pastor-Soler NM (2015) Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 10:305–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cheng CJ, Sung CC, Huang CL, Lin SH (2015) Inward-rectifying potassium channelopathies: new insights into disorders of sodium and potassium homeostasis. Pediatr Nephrol 30:373–383

    Article  PubMed  Google Scholar 

  10. Luke RG, Galla JH (2012) It is chloride depletion alkalosis, not contration alkalosis. J Am Soc Nephrol 23:204–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Olesen ET, Fenton RA (2013) Is there a role for PGE2 in urinary concentration? J Am Soc Nephrol 24:169–178

    Article  CAS  PubMed  Google Scholar 

  12. Bockenhauer D, Bichet DG (2013) Inherited secondary nephrogenic diabetes insipidus: concentrating on humans. Am J Physiol Ren Physiol 304:F1037–F1042

    Article  CAS  Google Scholar 

  13. van der Wijst J, Bindels RJ, Hoenderop JG (2014) Mg2+ homeostasis: the balancing act of TRPM6. Curr Opin Nephrol Hypertens 23:361–369

    Article  PubMed  Google Scholar 

  14. Chaimovitz C, Levi J, Better OS, Oslander L, Benderli A (1973) Studies on the site of renal salt loss in a patient with Bartter’s syndrome. Pediatr Res 7:89–94

    Article  CAS  PubMed  Google Scholar 

  15. Uribarri J, Alveranga D, Oh MS, Kukar NM, Del Monte ML, Carroll HJ (1985) Bartter’s syndrome due to a defect in salt reabsorption in the distal convoluted tubule. Nephron 40:52–56

    Article  CAS  PubMed  Google Scholar 

  16. Köckerling A, Reinalter SC, Seyberth HW (1996) Impaired response to furosemide in hyperprostaglandin E syndrome: evidence for a tubular defect in the loop of Henle. J Pediatr 129:519–528

    Article  Google Scholar 

  17. Unwin RJ, Capasso G (2006) Bartter’s and Gitelman’s syndromes: their relationship to the actions of loop and thiazide diuretics. Curr Opin Pharmacol 6:208–213

    Article  CAS  PubMed  Google Scholar 

  18. Reinalter SC, Jeck N, Peters M, Seyberth HW (2004) Pharmacotyping of hypokalaemic salt-losing tubular disorders. Acta Physiol Scand 181:513–521

    Article  CAS  PubMed  Google Scholar 

  19. Seyberth HW (2008) An improved terminology and classification of Bartter-like syndromes. Nat Clin Pract Nephrol 4:560–567

    Article  PubMed  Google Scholar 

  20. Chadha V, Alon US (2009) Hereditary renal tubular disorders. Semin Nephrol 29:399–411

    Article  CAS  PubMed  Google Scholar 

  21. Nozu K, Iijima K, Kanda K, Nakanishi K, Yoshikawa N, Satomura K, Kaito H, Hashimura Y, Ninchoji T, Komatsu H, Kamei K, Miyashita R, Kugo M, Ohashi H, Yamazaki H, Mabe H, Otsubo A, Igarashi T, Matsuo M (2010) The pharmacological characteristics of molecular-based inherited salt-losing tubulopathies. J Clin Endocrinol Metab 95:E511–E518

    Article  CAS  PubMed  Google Scholar 

  22. Cruz AJ, Castro A (2013) Gitelman or Bartter type 3 syndrome? A case of distal convoluted tubulopathy caused by CLCNKB gene mutation. BMJ Case Rep. doi:10.1136/bcr-2012-007929

    Google Scholar 

  23. Nüsing RM, Schaub TP, Klein T, Schweer H, Seyberth HW (1997) Prostanoid biosynthesis by blood monocytes of children with hyperprostagandin E syndrome. Pediatr Res 42:241–246

    Article  Google Scholar 

  24. Seyberth HW, Rascher W, Schweer H, Kühl PG, Mehls O, Schärer K (1985) Congentital hypokalemia with hypercalciuria in pretem infants: a hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr 107:694–701

    Article  CAS  PubMed  Google Scholar 

  25. Jeck N, Schlingmann KP, Reinalter SC, Kömhoff M, Peters M, Waldegger S, Seyberth HW (2005) Salt handling in distal nephron: lessons learned from inherited human disorders. Am J Physiol Regul Integr Comp Physiol 288:R782–R795

    Article  CAS  PubMed  Google Scholar 

  26. Knepper MA, Kwon TH, Nielsen S (2015) Molecular physiology of water balance. N Engl J Med 372:1349–1358

    Article  CAS  PubMed  Google Scholar 

  27. Peters M, Jeck N, Reinalter S, Leonhardt A, Tönshoff B, Klaus G, Gü KM, Seyberth HW (2002) Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med 112:183–190

    Article  PubMed  Google Scholar 

  28. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997) Mutations of the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178

    Article  CAS  PubMed  Google Scholar 

  29. Konrad M, Vollmer M, Lemmink HH, van den Heuvel LP, Jeck N, Vargas- Poussou R, Lakings A, Ruf R, Deschênes G, Antignac C, Guay-Woodford L, Knoers NV, Seyberth HW, Feldmann D, Hildebrandt F (2000) Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol 11:1449–1459

    CAS  PubMed  Google Scholar 

  30. Krämer BK, Bergler T, Stoelcker B, Waldegger S (2008) Mechanisms of disease: kidney-specific chloride channels ClCKA and ClCKB, Barttin subunit; and their clinical relevance. Nat Clin Pract Nephrol 4:38–46

    Article  PubMed  Google Scholar 

  31. Ellison DH (1991) The physiologic basis of diuretic synergism: its role in treating diuretic resistance. Ann Intern Med 114:886–894

    Article  CAS  PubMed  Google Scholar 

  32. Hoorn EJ, Ellison DH (2012) WNK kinases and the kidney. Exp Cell Res 318:1020–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ (2014) The sodium chloride cotransporteter SLC12A3: new roles in sodium, potasium, and blood pressure regulation. Pflugers Arch 466:107–118

    Article  CAS  PubMed  Google Scholar 

  34. Huang CL, Kuo E (2007) Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol 18:2649–2652

    Article  PubMed  Google Scholar 

  35. Liu W, Pastor-Soler NM, Schreck C, Zavilowitz B, Kleyman TR, Satlin LM (2012) Luminal flow modulates H+-ATPase activity in cortical collecting duct (CCD). Am J Physiol Ren Physiol 302:F205–F215

    Article  CAS  Google Scholar 

  36. Liu Y, Flores D, Carrisoza-Gaytán R, Rohatgi R (2014) Biochemical regulation of cyclooxygenase-2 in the renal collecting duct. Am J Physiol Ren Physiol 306:F214–F223

    Article  CAS  Google Scholar 

  37. Colussi G, Bettinelli A, Tedeschi S, De Ferrari ME, Syrén ML, Borsa N, Mattiello C, Casari G, Bianchetti MG (2007) A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin J Am Soc Nephrol 2:454–460

    Article  CAS  PubMed  Google Scholar 

  38. van Angelen AA, van der Kemp AMW, Hoenderop JG, Bindels RJ (2012) Increased expression of renal TRPM6 compensates for Mg2+ wasting during furosemide treatment. Clin Kidney J 5:535–544

    Article  PubMed Central  PubMed  Google Scholar 

  39. Favre GA, Nau V, Kolb I, Vargas-Poussou R, Hannedouche T, Moulin B (2012) Localization of tubular adaptation to renal sodium loss in Gitelman syndrome. Clin J Am Soc Nephrol 7:472–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Brochard K, Boyer O, Blanchard A, Loirat C, Niaudet P, Macher MA, Deschenes G, Bensman A, Decramer S, Cochat P, Morin D, Broux F, Caillez M, Guyot C, Novo R, Jeunemaître X, Vargas-Poussou R (2009) Phenotype- genotype correleation in antenatal and neonatal variants of Bartter syndrome. Nephrol Dial Transplant 24:1455–1464

    Article  CAS  PubMed  Google Scholar 

  41. Kömhoff M, Tekesin I, Peters M, Leonhard A, Seyberth HW (2005) Perinatal management of a preterm neonate affected by hyperprostaglandin E2 syndrome (HPS). Acta Paediatr 94:1690–1693

    Article  PubMed  Google Scholar 

  42. Leonhardt A, Timmermanns G, Roth B, Seyberth HW (1992) Calcium homeostasis and hypercalciuria in hyperprostaglandin E syndrome. J Pediatr 120:546–554

    Article  CAS  PubMed  Google Scholar 

  43. Reinalter SC, Gröne HJ, Konrad M, Seyberth HW, Klaus G (2001) Evaluation of long-term treatment with indomethacin in hereditary hypokalemic salt-losing tubulopathies. J Pediatr 139:398–406

    Article  CAS  PubMed  Google Scholar 

  44. Reinalter S, Devlieger H, Proesmans W (1998) Neonatal Bartter syndrome: sponataneous resolution of all signs and symptoms. Pediatr Nephrol 12:186–188

    Article  CAS  PubMed  Google Scholar 

  45. Ishimori S, Kaito H, Matsunoshita N, Otsubo H, Hashimoto F, Ninchoji T, Nozu K, Morisada N, Iijima K (2013) SLC26A3 gene analysis in patients with Bartter and Gitleman syndromes and clinical characteristics of patients with unidentified mutations. Kobe J Med Sci 59:E36–E43

    PubMed  Google Scholar 

  46. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB, Yale Gitelman's and Bartter's Syndrome Collaborative Study Group (2001) Gitelman’s syndrome revisited: an evaluation of symptoms and health-related qualitity of life. Kidney Int 59:710–717

    Article  CAS  PubMed  Google Scholar 

  47. Blanchard A, Vargas-Poussou R, Vallet M, Caumont-Prim A, Allard J, Desport E, Dubourg L, Monge M, Bergerot D, Baron S, Essig M, Bridoux F, Tack I, Azizi M (2015) Indomethacin, amiloride, or eplerenone for treating hypokalemia in Gitelman syndrome. J Am Soc Nephrol 26:468–475

    Article  PubMed Central  PubMed  Google Scholar 

  48. Brown NJ (2013) Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol 9:459–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Bockenhauer D, Cruwys M, Kleta R, Halperin LF, Wildgoose P, Souma T, Nukiwa N, Cheema-Dhadli S, Chong CK, Kamel KS, Davids MR, Halperin ML (2008) Antenatal Bartter’s syndrome: why ist this not a lethal condition? QJM 101:927–942

    Article  CAS  PubMed  Google Scholar 

  50. Famularo G, Gasbarrone L, Minisola G (2013) Hypomagnesemia and proton- pump inhibitors. Expert Opin Drug Saf 12:709–716

    Article  CAS  PubMed  Google Scholar 

  51. Bartter FC, Pronove P, Gill JR Jr, MacCardle RC (1962) Hyerplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 33:811–828

    Article  CAS  PubMed  Google Scholar 

  52. Gitelman HJ, Graham JB, Welt LG (1966) A new familie disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Phys 79:221–235

    CAS  PubMed  Google Scholar 

  53. McCredie DA, Rotenberg E, Williams AL (1974) Hypercalciuria in potassium-losing nephropathy: a new variant of Bartter’s syndrome. Aust Paediatr J 10:286–295

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannsjörg W. Seyberth.

Additional information

Answers

1: C. For the boy, the DC1 type of SLT is the most likely diagnosis based on the combination of tetany with normal urine osmolality after dehydration. For the adult, the combination of tetany with isothenuria and hypochloremia best fits the diagnosis of a tubular disorder of the DC2 type. A loop disorder can definitely be excluded.

2: B. The triad of hypokalemia, hypomagnesemia, and almost normal specific gravity in a random urine specimen is characteristic for a DCT-like disorder in all three patients. However, the additional sign of hypochloremia in the unrelated young woman leads to the diagnosis of a DC2 type disorder.

3: A. Children with hypercalciuria and potassium-losing nephropathy fulfill all of the critical criteria for the diagnosis of a loop disorder, particularly when they had been born prematurely after a pregnancy that had been complicated by polyhydramnios. As hypokalemia was not necessarily present when the infants were first examined, one can assume that the most likely diagnosis is a L2 type disorder with ROMK defect. This SLT type is often associated with transient hypoaldosteronism in the postnatal period.

4: B. The (additional) function of ClC-Ka can be best demonstrated by comparing the clinical presentation of patients with isolated ClC-Kb defect (DC2 type) directly with the presentation of patients with a combined ClC-Ka and ClC-Kb defect (L-DC1 type).

5: E. Na-K-ATPase is the only functional protein that is expressed at the basolateral and not at the apical/luminal cell membrane. Therefore it cannot be stimulated directly by increased urine flow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyberth, H.W. Pathophysiology and clinical presentations of salt-losing tubulopathies. Pediatr Nephrol 31, 407–418 (2016). https://doi.org/10.1007/s00467-015-3143-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3143-1

Keywords

Navigation