Skip to main content
Log in

Nephronophthisis 13: implications of its association with Caroli disease and altered intracellular localization of WDR19 in the kidney

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Nephronophthisis 13 (NPHP 13) is associated with mutations in the WDR19 gene, which encodes for a protein in the intraflagellar transport complex. Herein, we describe six additional cases accompanied by Caroli syndrome or disease.

Methods

Targeted exome sequencing covering 96 ciliopathy-related genes was performed for 48 unrelated Korean patients with a clinical suspicion of NPHP. Mutations were confirmed by Sanger sequencing. We evaluated the expression of WDR19 in the biopsied kidney by immunohistochemistry in patients and controls.

Results

We detected three (3/48, 6.3 %) unrelated index cases with WDR19 mutations. One of the cases involved two siblings with the same mutation. Later, we detected an additional index case with a similar phenotype of kidney and liver involvement by Sanger sequencing of WDR19. The p.R1178Q mutation was common in all patients. All of the six affected patients from four families progressed to chronic kidney disease. Of note, all six patients had Caroli syndrome or disease. Immunohistochemistry for WDR19 showed localized expression along the luminal borders of the renal tubular epithelium in controls, whereas it showed diffuse cytoplasmic staining in the affected patients.

Conclusions

Caroli disease is a major extra-renal phenotype associated with mutations in WDR19 in the Korean population. In this study, we visually validated the expression pattern of mutant WDR19 protein in the kidneys of NPHP 13 patients. More data are needed to identify the true frequency of p.R1178Q. Functional studies including transfection assay will provide solid grounds for the pathogenicity of each mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hildebrandt F, Zhou W (2007) Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18:1855–1871

    Article  CAS  PubMed  Google Scholar 

  3. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  4. Hildebrandt F, Attanasio M, Otto E (2009) Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol 20:23–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hurd TW, Hildebrandt F (2011) Mechanisms of nephronophthisis and related ciliopathies. Nephron Exp Nephrol 118:e9–e14

    Article  PubMed  Google Scholar 

  6. Fehrenbach H, Decker C, Eisenberger T, Frank V, Hampel T, Walden U, Amann KU, Kruger-Stollfuss I, Bolz HJ, Haffner K, Pohl M, Bergmann C (2014) Mutations in WDR19 encoding the intraflagellar transport component IFT144 cause a broad spectrum of ciliopathies. Pediatr Nephrol 29:1451–1456

    Article  PubMed  Google Scholar 

  7. Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, Leh SM, Midtbo M, Filhol E, Bole-Feysot C, Nitschke P, Gilissen C, Haugen OH, Sanders JS, Stolte-Dijkstra I, Mans DA, Steenbergen EJ, Hamel BC, Matignon M, Pfundt R, Jeanpierre C, Boman H, Rodahl E, Veltman JA, Knappskog PM, Knoers NV, Roepman R, Arts HH (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 89:634–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Coussa RG, Otto EA, Gee HY, Arthurs P, Ren H, Lopez I, Keser V, Fu Q, Faingold R, Khan A, Schwartzentruber J, Majewski J, Hildebrandt F, Koenekoop RK (2013) WDR19: an ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior–Løken syndrome. Clin Genet 84:150–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Halbritter J, Porath JD, Diaz KA, Braun DA, Kohl S, Chaki M, Allen SJ, Soliman NA, Hildebrandt F, Otto EA, GPN Study Group (2013) Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet 132:865–884

    Article  CAS  PubMed  Google Scholar 

  10. Gunay-Aygun M (2009) Liver and kidney disease in ciliopathies. Am J Med Genet C: Semin Med Genet 151C:296–306

    Article  CAS  Google Scholar 

  11. Shedda S, Robertson A (2007) Caroli’s syndrome and adult polycystic kidney disease. ANZ J Surg 77:292–294

    Article  PubMed  Google Scholar 

  12. Tahvanainen E, Tahvanainen P, Kaariainen H, Hockerstedt K (2005) Polycystic liver and kidney diseases. Ann Med 37:546–555

    Article  CAS  PubMed  Google Scholar 

  13. Masyuk AI, Masyuk TV, LaRusso NF (2008) Cholangiocyte primary cilia in liver health and disease. Dev Dyn 237:2007–2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kassahun WT, Kahn T, Wittekind C, Mossner J, Caca K, Hauss J, Lamesch P (2005) Caroli’s disease: liver resection and liver transplantation. Experience in 33 patients. Surgery 138:888–898

    Article  PubMed  Google Scholar 

  15. Caroli J, Couinaud C, Soupault R, Porcher P, Eteve J (1958) A new disease, undoubtedly congenital, of the bile ducts: unilobar cystic dilation of the hepatic ducts. Sem Hop 34:496–502

    CAS  PubMed  Google Scholar 

  16. Caroli J (1973) Diseases of the intrahepatic biliary tree. Clin Gastroenterol 2:147–161

    CAS  PubMed  Google Scholar 

  17. Brancatelli G, Federle MP, Vilgrain V, Vullierme MP, Marin D, Lagalla R (2005) Fibropolycystic liver disease: CT and MR imaging findings. Radiographics 25:659–670

    Article  PubMed  Google Scholar 

  18. Gunay-Aygun M, Avner ED, Bacallao RL, Choyke PL, Flynn JT, Germino GG, Guay-Woodford L, Harris P, Heller T, Ingelfinger J, Kaskel F, Kleta R, LaRusso NF, Mohan P, Pazour GJ, Shneider BL, Torres VE, Wilson P, Zak C, Zhou J, Gahl WA (2006) Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis: summary statement of a first National Institutes of Health/Office of Rare Diseases conference. J Pediatr 149:159–164

  19. Otto EA, Tory K, Attanasio M, Zhou W, Chaki M, Paruchuri Y, Wise EL, Wolf MT, Utsch B, Becker C, Nürnberg G, Nürnberg P, Nayir A, Saunier S, Antignac C, Hildebrandt F (2009) Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J Med Genet 46:663–670

    Article  CAS  PubMed  Google Scholar 

  20. Doherty D, Parisi MA, Finn LS, Gunay-Aygun M, Al-Mateen M, Bates D, Clericuzio C, Demir H, Dorschner M, van Essen AJ, Gahl WA, Gentile M, Gorden NT, Hikida A, Knutzen D, Ozyurek H, Phelps I, Rosenthal P, Verloes A, Weigand H, Chance PF, Dobyns WB, Glass IA (2010) Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet 47:8–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Parisi MA, Doherty D, Chance PF, Glass IA (2007) Joubert syndrome (and related disorders) (OMIM 213300). Eur J Hum Genet 15:511–521

    Article  CAS  PubMed  Google Scholar 

  22. Pagon RA, Haas JE, Bunt AH, Rodaway KA (1982) Hepatic involvement in the Bardet-Biedl syndrome. Am J Med Genet 13:373–381

    Article  CAS  PubMed  Google Scholar 

  23. Thauvin-Robinet C, Cossee M, Cormier-Daire V, Van Maldergem L, Toutain A, Alembik Y, Bieth E, Layet V, Parent P, David A, Goldenberg A, Mortier G, Héron D, Sagot P, Bouvier AM, Huet F, Cusin V, Donzel A, Devys D, Teyssier JR, Faivre L (2006) Clinical, molecular, and genotype-phenotype correlation studies from 25 cases of oral-facial-digital syndrome type 1: a French and Belgian collaborative study. J Med Genet 43:54–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  26. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed Central  PubMed  Google Scholar 

  28. Chaki M, Hoefele J, Allen SJ, Ramaswami G, Janssen S, Bergmann C, Heckenlively JR, Otto EA, Hildebrandt F (2011) Genotype-phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int 80:1239–1245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lin B, Utleg AG, Gravdal K, White JT, Halvorsen OJ, Lu W, True LD, Vessella R, Lange PH, Nelson PS, Hood L, Kalland K-H, Akslen LA (2008) WDR19 Expression is increased in prostate cancer compared with normal cells, but low-intensity expression in cancers is associated with shorter time to biochemical failures and local recurrence. Clin Cancer Res 14:1397–1406

    Article  CAS  PubMed  Google Scholar 

  30. Leandro P, Gomes CM (2008) Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning. Mini Rev Med Chem 8:901–911

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Young-Hun Choi and Hyungjin Kim (Department of Radiology, Seoul National University Children’s Hospital) for reviewing the radiological images. We also thank Younghoon Kim for helping with the preparation of the control samples for immunohistochemistry. This study was supported by a grant (HI12C0014) from the Korea Healthcare technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae II Cheong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.M., Ahn, Y.H., Kang, H.G. et al. Nephronophthisis 13: implications of its association with Caroli disease and altered intracellular localization of WDR19 in the kidney. Pediatr Nephrol 30, 1451–1458 (2015). https://doi.org/10.1007/s00467-015-3068-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3068-8

Keywords

Navigation