Skip to main content
Log in

Variationally consistent coupling of non-matching discretizations for large deformation problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Non-matching interfaces occur in large computational models of complicated structures when different discretizations are used in different regions of the problem domain. Presence of non-matching interfaces, for instance, between two or more finite element meshes of different refinement, or between a meshfree region and a finite element region, can lead to erroneous results. In this work, a variationally consistent coupling method is developed to ensure that such patch tests are passed for any choice of numerical integration over the interface. This is achieved by constructing an integration constraint over the non-matching interface and by modifying the approximation basis functions for the adjacent discretizations in a way that guarantees passing the patch test. Numerical examples are presented to verify the formulation and study the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Attaway SW, Heinstein MW, Swegle JW (1994) Coupling of smooth particle hydrodynamics with the finite element method. Nucl Eng Des 150(2–3):199–205

    Article  Google Scholar 

  2. Becker R, Hansbo P, Stenberg R (2001) A finite element method for domain decomposition with non-matching grids. Technical report, Chalmers Finite Element Center, Chalmers University of Technology, Sweden, Preprint 2001–2015

  3. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139(1):49–74

    Article  MATH  MathSciNet  Google Scholar 

  4. Belytschko T, Lu YY, Gu L (2005) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MATH  MathSciNet  Google Scholar 

  5. Belytschko T, Organ D, Krongauz Y (1995) A coupled finite element–element-free Galerkin method. Comput Mech 17(3):186–195

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47(6):1189–1214

    Article  MATH  Google Scholar 

  7. Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95:387–418

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466

    Article  MATH  Google Scholar 

  11. Cho YS, Jun S, Im S, Kim HG (2005) An improved interface element with variable nodes for non-matching finite element meshes. Comput Methods Appl Mech Eng 194(27):3022–3046

    Article  MATH  Google Scholar 

  12. Dias APC, Serpa AL, Bittencourt ML (2015) High-order mortar-based element applied to nonlinear analysis of structural contact mechanics. Comput Methods Appl Mech Eng 294:19–55

    Article  MathSciNet  Google Scholar 

  13. Dickopf T, Krause R (2009) Efficient simulation of multi-body contact problems on complex geometries: a flexible decomposition approach using constrained minimization. Int J Numer Methods Eng 77(13):1834–1862

    Article  MATH  MathSciNet  Google Scholar 

  14. Documentation A Abaqus benchmarks manual 1.3.10

  15. Dohrmann CR, Key SW, Heinstein MW (2000) A method for connecting dissimilar finite element meshes in two dimensions. Int J Numer Methods Eng 48:655–678

    Article  MATH  Google Scholar 

  16. Dohrmann CR, Key SW, Heinstein MW (2000) Methods for connecting dissimilar three-dimensional finite element meshes. Int J Numer Methods Eng 47:1057–1080

    Article  MATH  Google Scholar 

  17. Dohrmann CR, Key SW, Heinstein MW (2000) A method for connecting dissimilar finite element meshes in two dimensions. Int J Numer Methods Eng 48(5):655–678

    Article  MATH  Google Scholar 

  18. Dolbow J, Belytschko T (1998) An introduction to programming the meshless element-free Galerkin method. Arch Comput Methods Eng 5:207–241

    Article  MathSciNet  Google Scholar 

  19. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23(3):219–230

    Article  MATH  MathSciNet  Google Scholar 

  20. Farhat C, Roux FX (1991) A method for finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205–1227

    Article  MATH  MathSciNet  Google Scholar 

  21. Farhat C, Roux FX (1994) Implicit parallel processing in structural mechanics. Comput Mech Adv 2:1–124

    Article  MATH  MathSciNet  Google Scholar 

  22. Fili A, Naji A, Duan Y (2010) Coupling three-field formulation and meshless mixed Galerkin methods using radial basis functions. J Comput Appl Math 234(8):2456–2468

    Article  MATH  MathSciNet  Google Scholar 

  23. Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36(3):226–244

    Article  MATH  Google Scholar 

  24. Flemisch B, Puso MA, Wohlmuth BI (2005) A new dual mortar method for curved interfaces: 2D elasticity. Int J Numer Methods Eng 63:813–832

    Article  MATH  MathSciNet  Google Scholar 

  25. Flemisch B, Wohlmuth BI (2004) A domain decomposition method on nested domains and nonmatching grids. Numer Methods Partial Differ Equ 20:374–387

    Article  MATH  MathSciNet  Google Scholar 

  26. Fragakis Y, Papadrakakis M (2003) The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods. Comput Methods Appl Mech Eng 192:3799–3830

    Article  MATH  Google Scholar 

  27. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193:3523–3540

    Article  MATH  MathSciNet  Google Scholar 

  28. Hansbo P, Lovadina C, Perugia I, Sangalli G (2003) A lagrange multiplier method for the finite element solution of elliptic domain decomposition problems using non-matching meshes. Technical report, Chalmers Finite Element Center, Chalmers University of Technology, Sweden, Preprint 2003-12

  29. Hansbo P, Lovadina C, Perugia I, Sangalli G (2005) A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numer Math 100:91–115

    Article  MATH  MathSciNet  Google Scholar 

  30. Häussler-Combe U, Korn C (1998) An adaptive approach with the element-free-Galerkin method. Comput Methods Appl Mech Eng 162(1):203–222

    Article  MATH  MathSciNet  Google Scholar 

  31. Hegen D (1996) Element-free Galerkin methods in combination with finite element approaches. Comput Methods Appl Mech Eng 135(1–2):143–166

    Article  MATH  Google Scholar 

  32. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications Inc., Mineola

    MATH  Google Scholar 

  33. Irons BM (1971) Numerical integration applied to finite element methods. Department of Civil Engineering, University College of Swansea, Swansea

    Google Scholar 

  34. Kim HG (2002) Interface element method (IEM) for a partitioned system with non-matching interfaces. Comput Methods Appl Mech Eng 191(29):3165–3194

    Article  MATH  MathSciNet  Google Scholar 

  35. Laursen TA, Heinstein MW (2003) Consistent mesh tying methods for topologically distinct discretized surfaces in non-linear solid mechanics. Int J Numer Methods Eng 57:1197–1242

    Article  MATH  MathSciNet  Google Scholar 

  36. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  37. Liu GR (2010) Meshfree methods: moving beyond the finite element method. CRC Press, Boca Raton

    MATH  Google Scholar 

  38. Liu GR, Tu ZH (2002) An adaptive procedure based on background cells for meshless methods. Comput Methods Appl Mech Eng 191(17):1923–1943

    Article  MATH  Google Scholar 

  39. Park KC, Felippa CA, Rebel G (2002) A simple algorithm for localized construction of non-matching structural interfaces. Int J Numer Methods Eng 53:2117–2142

    Article  MATH  Google Scholar 

  40. Popp A, Wohlmuth BI, Gee MW, Wall WA (2012) Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J Sci Comput 34(4):B421–B446

    Article  MATH  MathSciNet  Google Scholar 

  41. Prakash A, Hjelmstad KD (2004) A FETI based multi-time-step coupling method for Newmark schemes in structural dynamics. Int J Numer Methods Eng 61:2183–2204

    Article  MATH  Google Scholar 

  42. Prakash A, Taciroglu E, Hjelmstad KD (2014) Computationally efficient multi-time-step method for partitioned time integration of highly nonlinear structural dynamics. Comput Struct 133:51–63

    Article  Google Scholar 

  43. Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59:315–336

    Article  MATH  Google Scholar 

  44. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6):601–629

    Article  MATH  Google Scholar 

  45. Quiroz L, Beckers P (1995) Non-conforming mesh gluing in the finite elements method. Int J Numer Methods Eng 38:2165–2184

    Article  MATH  Google Scholar 

  46. Rabczuk T, Xiao SP, Sauer M (2006) Coupling of mesh-free methods with finite elements: basic concepts and test results. Commun Numer Methods Eng 22(10):1031–1065

    Article  MATH  MathSciNet  Google Scholar 

  47. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    Article  MATH  MathSciNet  Google Scholar 

  48. Simo JC, Hughes TJR (1986) On the variational foundations of assumed strain methods. J Appl Mech 53(1):51–54

    Article  MATH  MathSciNet  Google Scholar 

  49. Taylor G (1948) The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations. Proc R Soc Lond. Ser A. Math Phys Sci 194(1038):289–299

    Article  Google Scholar 

  50. Toselli A, Widlund O (2005) Domain decomposition methods—algorithms and theory. Springer, Berlin

    Book  MATH  Google Scholar 

  51. Wilkins ML, Guinan MW (1973) Impact of cylinders on a rigid boundary. J Appl Phys 44(3):1200–1206

    Article  Google Scholar 

  52. Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9):1183–1225

    Article  MATH  MathSciNet  Google Scholar 

  53. You Y, Chen J-S, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31(3–4):316–326

    MATH  Google Scholar 

  54. Zienkiewicz OC, Taylor RL (2000) The finite element method volume 1 the basis, 5th edn. Butterworth-Heinemann, Oxford, UK

    MATH  Google Scholar 

Download references

Acknowledgements

This research is based upon work supported in part by the National Science Foundation under Grant Numbers 0547670, 1031123, and in part by U.S. Department of Energy X-stack program under Grant No. DE-FC02-12ER26104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Prakash, A., Chen, JS. et al. Variationally consistent coupling of non-matching discretizations for large deformation problems. Comput Mech 60, 465–478 (2017). https://doi.org/10.1007/s00466-017-1417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1417-0

Keywords

Navigation