Skip to main content
Log in

Modeling molecular mechanisms in the axon

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abe I, Tsujino A, Hara Y, Ichimura H, Ochiai N (2002) Paranodal demyelination by gradual nerve stretch can be repaired by elongation of internodes. Acta Neuropathol 104:505–512

    Google Scholar 

  2. Ahmad FJ, Echeverri CJ, Vallee RB, Baas PW (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J Cell Biol 140:391–401

    Article  Google Scholar 

  3. Ahmad FJ, Hughey J, Wittmann T, Hyman A, Greaser M, Baas PW (2000) Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nature Cell Biol 2:276–280

    Article  Google Scholar 

  4. Ahmadzadeh H, Smith DH, Shenoy VB (2014) Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model. Biophys J 106:1123–1133

    Article  Google Scholar 

  5. Ahmadzadeh H, Smith DH, Shenoy VB (2015) Mechanical effects of dynamic binding between tau proteins on microtubules during axonal injury. Biophys J 109:2328–2337

    Article  Google Scholar 

  6. Ahmed WW, Rajagopalan J, Tofangchi A, Saif TA (2012) Neuromechanics: the role of tension in neuronal growth and memory. Fundamentals and frontiers. Wiley, Chichester

    Google Scholar 

  7. Athamneh AIM, Suter DM (2015) Quantifying mechanical force in axonal growth and guidance. Front Cell Neurosci 9:359

    Article  Google Scholar 

  8. Ayali A (2010) The function of mechanical tension in neuronal and network development. Integr Biol 2:178–182

    Article  Google Scholar 

  9. Baas P (2001) Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction. Trends Cell Biol 11:244–249

    Article  Google Scholar 

  10. Bernal R, Pullarkat PA, Melo F (2007) Mechanical properties of axons. Phys Rev Lett 99:018301

    Article  Google Scholar 

  11. Betz T, Koch D, Lu YB, Franze K, Käs JA (2011) Growth cones as soft and weak force generators. Proc Natl Acad Sci USA 108:13420–13425

    Article  Google Scholar 

  12. Bray D (1979) Mechanical tension produced by nerve cells in tissue culture. J Cell Sci 37:391–410

    Google Scholar 

  13. Bray D, Bunge MB (1981) Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol 10:589–605

    Article  Google Scholar 

  14. Bridgman PC, Dave S, Asnes CF, Tullio AN, Adelstein RS (2001) Myosin IIB is required for growth cone motility. J Neurosci 21:6159–6169

    Google Scholar 

  15. Budday S, Nay R, de Rooij R, Steinmann P, Wyrobek T, Ovaert TC, Kuhl E (2015) Mechanical properties of gray and white matter brain tissue by indentation. J Mech Behav Biomed Mater 46:318–330

    Article  Google Scholar 

  16. Burgess SA, Walker ML, Sakakibara H, Knight PJ, Oiwa K (2003) Dynein structure and power stroke. Nature 421:715–718

    Article  Google Scholar 

  17. Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone G, Visco-Comandini F, Pantano P, Innocenti GM (2013) Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: comparing data from histology and magnetic resonance imaging diffusion tractography. J Neurosci 33:14501–14511

    Article  Google Scholar 

  18. Carter NJ, Cross RA (2005) Mechanics of the kinesin step. Nature 435:308–312

    Article  Google Scholar 

  19. Chatelin S, Constantinesco A, Willinger R (2010) Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations. Biorheology 47:255–276

    Google Scholar 

  20. Coles CH, Bradke F (2015) Coordinating neuronal actin-microtubule dynamics. Curr Biol 25:R677–R691

    Article  Google Scholar 

  21. Conde C, Cáceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332

    Article  Google Scholar 

  22. de Rooij R, Kuhl E (2016) Constitutive modeling of brain tissue: current perspectives. Appl Mech Rev 68:1–16

    Article  Google Scholar 

  23. Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev 91(2):555–602

    Article  Google Scholar 

  24. Dennerll TJ, Lamoureux P, Buxbaum RE, Heidemann SR (1989) The cytomechanics of axonal elongation and retraction. J Cell Biol 109:3073–3083

    Article  Google Scholar 

  25. Franze K, Janmey PA, Guck J (2013) Mechanics in neuronal development and repair. Annu Rev Biomed Eng 15:227–251

    Article  Google Scholar 

  26. Franze K, Guck J (2010) The biophysics of neuronal growth. Rep Prog Phys 73:094601

    Article  Google Scholar 

  27. Ganguly A, Tang Y, Wang L, Ladt K, Loi J, Dargent B, Leterrier C, Roy S (2015) A dynamic formin-dependent deep F-actin network in axons. J Cell Biol 210:401–417

    Article  Google Scholar 

  28. Garcia JA, Pena JM, McHugh S, Jerusalem A (2012) A model of the spatially dependent mechanical properties of the axon during its growth. Comput Model Eng Sci 87:411–432

    MathSciNet  Google Scholar 

  29. Garcia-Grajales JA, Jerusalem A, Goriely A (2016) Continuum mechanical modeling of axonal growth. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2016.07.032

  30. Gennerich A, Carter AP, Reck-Peterson SL, Vale RD (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965

    Article  Google Scholar 

  31. Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934

    Article  Google Scholar 

  32. Göktepe S, Menzel A, Kuhl E (2014) The generalized Hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39

    Article  MathSciNet  MATH  Google Scholar 

  33. Goldberg JL (2003) How does an axon grow? Genes Dev 17:941–958

    Article  Google Scholar 

  34. Goriely A, Budday S, Kuhl E (2015) Neuromechanics: from neurons to brain. Adv Appl Mech 48:79–139

    Article  Google Scholar 

  35. Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jérusalem A, Sivaloganathan S, Squier W, van Dommelen JAW, Waters S, Kuhl E (2015) Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 14:931–965

    Article  Google Scholar 

  36. Hällström W, Lexholm M, Suyatin DB, Hammarin G, Hessman D, Samuelson L, Montelius L, Kanje M, Prinz CN (2010) Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett 10:782–787

    Article  Google Scholar 

  37. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B 126:136–195

    Article  Google Scholar 

  38. Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94:129–142

    Article  Google Scholar 

  39. Holland MA, Miller KE, Kuhl E (2015) Emerging brain morphologies from axonal elongation. Ann Biomed Eng 43:1640–1653

    Article  Google Scholar 

  40. Hyland C, Mertz AF, Forscher P, Dufresne E (2014) Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons. Sci Rep 4:4961

    Google Scholar 

  41. Jakobs M, Franze K, Zemel A (2015) Force generation by molecular-motor-powered microtubule bundles; implications for neuronal polarization and growth. Front Cell Neurosci 9:2761

    Article  Google Scholar 

  42. Kawamura Y, Dyck PJ, Shimono M, Okazaki H, Tateishi J, Doi H (1981) Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 40:667–675

    Article  Google Scholar 

  43. King SM (2011) Dyneins: structure, biology and disease. Academic Press, Boston

    Google Scholar 

  44. Koch D, Rosoff WJ, Jiang J, Geller HM, Urbach JS (2012) Strength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Biophys J 102:452–460

    Article  Google Scholar 

  45. Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mater Res 41:75–97

    Article  Google Scholar 

  46. Lamoureux P, Buxbaum RE, Heidemann SR (1989) Direct evidence that growth cones pull. Nature 340:159–162

    Article  Google Scholar 

  47. Lamoureux P, Heidemann SR, Martzke NR, Miller KE (2010) Growth and elongation within and along the axon. Dev Neurobiol 70:135–149

    Article  Google Scholar 

  48. Lowery LA, Vactor DV (2009) The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10:332–343

    Article  Google Scholar 

  49. Lu W, Fox P, Lakonishok M, Davidson MW, Gelfand VI (2013) Initial neurite outgrowth in drosophila neurons is driven by kinesin-powered microtubule sliding. Curr Biol 23:1018–1023

    Article  Google Scholar 

  50. Mallik R, Carter BC, Lex SA, King SJ, Gross SP (2004) Cytoplasmic dynein functions as a gear in response to load. Nature 427:649–652

    Article  Google Scholar 

  51. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, Simha RA (2013) Hydrodynamics of soft active matter. Rev Model Phys 85:1143–1189

    Article  Google Scholar 

  52. Moulton DE, Lessinnes T, Goriely A (2013) Morphoelastic rods. Part I: a single growing elastic rod. J Mech Phys Solids 61:398–427

    Article  MathSciNet  Google Scholar 

  53. Nagy S, Ricca BL, Norstrom MF, Courson DS, Brawley CM, Smithback PA, Rock RS (2008) A myosin motor that selects bundled actin for motility. Proc Natl Acad Sci USA 105:9616–9620

    Article  Google Scholar 

  54. O’Toole M, Lamoureux P, Miller KE (2008) A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys J 94:2610–2620

    Article  Google Scholar 

  55. O’Toole M, Lamoureux P, Miller KE (2015) Measurement of subcellular force generation in neurons. Biophys J 108:1027–1037

    Article  Google Scholar 

  56. O’Toole M, Lamoureux P, Miller KE (2016) Forces control effective viscosity in neurons (submitted for publication)

  57. Pannese E (2015) Neurocytology: fine structure of neurons, nerve processes, and neuroglial cells. Springer, Berlin

    Book  Google Scholar 

  58. Peter SJ, Mofrad MRK (2012) Computational modeling of axonal microtubule bundles under tension. Biophys J 102:749–757

    Article  Google Scholar 

  59. Pritchard RH, Huang YYS, Terentjev EM (2014) Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter 10:1864–1884

    Article  Google Scholar 

  60. Rajagopalan J, Tofangchi A, Saif T (2010) Drosophila neurons actively regulate axonal tension in vivo. Biophys J 99:3208–3215

    Article  Google Scholar 

  61. Rausch MK, Kuhl E (2013) On the effect of prestrain and residual stress in thin biological membranes. J Mech Phys Solids 61:1955–1969

    Article  MathSciNet  Google Scholar 

  62. Recho P, Jérusalem A, Goriely A (2016) Growth, collapse, and stalling in a mechanical model for neurite motility. Phys Rev E 93:032410

    Article  Google Scholar 

  63. Roberts AJ, Goodman BS, Reck-Peterson SL, Balasubramanian M (2014) Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 3:e02641

    Article  Google Scholar 

  64. Rodriguez ML, McGarry PJ, Sniadecki NJ (2013) Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev 65:060801

    Article  Google Scholar 

  65. Roossien DH, Lamoureux P, Miller KE (2014) Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J Cell Sci 127:3593–3602

    Article  Google Scholar 

  66. Roossien D, Miller K, Gallo G (2015) Ciliobrevins as tools for studying dynein motor function. Front Cell Neurosci 9:252

    Article  Google Scholar 

  67. Siechen S, Yang S, Chiba A, Saif T (2009) Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc Natl Acad Sci USA 106:12611–12616

    Article  Google Scholar 

  68. Smith DH (2009) Stretch growth of integrated axon tracts: extremes and exploitations. Prog Neurobiol 89:231–239

    Article  Google Scholar 

  69. Soheilypour M, Peyro M, Peter SJ, Mofrad MRK (2015) Buckling behavior of individual and bundled microtubules. Biophys J 108:1718–1726

    Article  Google Scholar 

  70. Suresh S (2006) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438

    Article  Google Scholar 

  71. Suter DM, Miller KE (2011) The emerging role of forces in axonal elongation. Prog Neurobiol 94:91–101

    Article  Google Scholar 

  72. Toba S, Watanabe TM, Yamaguchi-Okimoto L, Toyoshima YY, Higuchi H (2006) Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci USA 103:5741–5745

    Article  Google Scholar 

  73. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  Google Scholar 

  74. van den Bedem H, Kuhl E (2015) Tau-ism: the yin and yang of microtubule sliding, detachment, and rupture. Biophys J 109:2215–2217

    Article  Google Scholar 

  75. Vaughan KT, Tynan SH, Faulkner NE, Echeverri CJ, Vallee RB (1999) Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. J Cell Sci 112:1437–1447

    Google Scholar 

  76. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456

    Article  Google Scholar 

  77. Yildiz A, Selvin P (2005) Kinesin: walking, crawling or sliding along? Trends Cell Biol 15:112–120

    Article  Google Scholar 

  78. Yu W, Baas PW (1994) Changes in microtubule number and length during axon differentiation. J Neurosci 14:2818–2829

    Google Scholar 

  79. Zemel A, Mogilner A (2009) Motor-induced sliding of microtubule and actin bundles. Phys Chem Chem Phys 11:4821–4833

    Article  Google Scholar 

  80. Zhang H, Berg JS, Li Z, Wang Y, Lång P, Sousa AD, Bhaskar A, Cheney RE, Strömblad S (2004) Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Bio 6:523–531

    Article  Google Scholar 

  81. Zohdi TI (2007) A computational framework for network modeling of fibrous biological tissue deformation and rupture. Comput Methods Appl Mech Eng 196:2972–2980

    Article  MathSciNet  MATH  Google Scholar 

  82. Zohdi TI (2016) An agent-based computational framework for simulation of competing hostile planet-wide populations. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2016.04.032

  83. Zöllner AM, Abilez OJ, Böl M, Kuhl E (2012) Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis. PLoS ONE 7:e45661

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Stanford Graduate Fellowship to Rijk de Rooij and by the Bio-X IIP seed Grant ‘Molecular Mechanisms of Chronic Traumatic Encephalopathy’ to Ellen Kuhl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kuhl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Rooij, R., Miller, K.E. & Kuhl, E. Modeling molecular mechanisms in the axon. Comput Mech 59, 523–537 (2017). https://doi.org/10.1007/s00466-016-1359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1359-y

Keywords

Navigation