Skip to main content
Log in

WYPIWYG hyperelasticity for isotropic, compressible materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Nowadays the most common approach to model elastic behavior at large strains is through hyperelasticity. Hyperelastic models usually specify the shape of the stored energy function. This shape is modulated by some material parameters that are computed so the predicted stresses best fit the experimental data. Many stored energy functions have been proposed in the literature for isotropic and anisotropic materials, either compressible or incompressible. What-You-Prescribe-Is-What-You-Get (WYPIWYG) formulations present a different approach which may be considered an extension of the infinitesimal framework. The shape of the stored energy is not given beforehand but computed numerically from experimental data solving the equilibrium equations. The models exactly fit the experimental data without any material parameter. WYPIWYG procedures have comparable efficiency in finite element procedures as classical hyperelasticity. In this work we present a WYPIWYG numerical procedure for compressible isotropic materials and we motivate the formulation through an equivalent infinitesimal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boca Ratón

    Google Scholar 

  2. Ward IM, Hadley DW (1993) An Introduction to the mechanical properties of solid polymers. Wiley, Chichester

  3. Ogden RW (1997) Nonlinear elastic deformations. Dover, New York

    MATH  Google Scholar 

  4. Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, Chichester

    MATH  Google Scholar 

  5. Humphrey JD (2013) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Google Scholar 

  6. Fung YC (1993) A first course in continuum mechanics. Prentice-Hall, New Jersey

    Google Scholar 

  7. Twizell EH, Ogden RW (1983) Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressinle isotropic elastic materials. J Aust Math Soc B 24(04):424–434

    Article  MATH  Google Scholar 

  8. Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34(6):484–502

    Article  MATH  Google Scholar 

  9. Kakavas PA (2000) A new development of the strain energy function for hyperelastic materials using a logarithmic strain approach. J Appl Polym Sci 77:660–672

    Article  Google Scholar 

  10. Pancheri FQ, Dorfmann L (2014) Strain-controlled biaxial tension of natural rubber: new experimental data. Rubber Chem Technol 87(1):120–138

    Article  Google Scholar 

  11. Palmieri G, Sasso M, Chiappini G, Amodio D (2009) Mullins effect characterization of elastomers by multi-axial cyclic tests and optical experimental methods. Mech Mater 41(9):1059–1067

    Article  Google Scholar 

  12. Urayama K (2006) An experimentalist’s view of the physics of rubber elasticity. J Polym Sci Polym Phys 44:3440–3444

    Article  Google Scholar 

  13. Khajehsaeid H, Arghavani J, Naghdabadi R (2013) A hyperelastic constitutive model for rubber-like materials. Eur J Mech A Solid 38:144–151

    Article  MathSciNet  MATH  Google Scholar 

  14. Lopez-Pamies O (2010) A new \(I_{1}\)-based hyperelastic model for rubber elastic materials. CR Mech 338(1):3–11

    Article  MathSciNet  MATH  Google Scholar 

  15. Maeda N, Fujikawa M, Makabe C, Yamabe J, Kodama Y, Koishi M (2015) Performance evaluation of various hyperelastic constitutive models of rubbers. In: Marvalova B, Petrikova I (eds) Constitutive models for rubbers IX. CRC Press, Boca Raton, pp 271–277

    Chapter  Google Scholar 

  16. Steinmann P, Hossain M, Possart G (2012) Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch Appl Mech 82:1183–1217

    Article  MATH  Google Scholar 

  17. Bechir H, Chevalier L, Chaouche M, Boufala K (2006) Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur J Mech A Solid 25(1):110–124

    Article  MATH  Google Scholar 

  18. Gendy AS, Saleeb AF (2000) Nonlinear material parameter estimation for characterizing hyperelastic large strain models. Comput Mech 25(1):66–77

    Article  MATH  Google Scholar 

  19. Stumpf PT, Marczak RJ (2010) Optimization of constitutive parameters for hyperelastic models satisfying the Baker-Ericksen inequalities. In: Dvorkin E, Goldschmit M, Storti M (eds) Mecanica computational XXIX. Asociación Argentina de Mecánica Computacional, Buenos Aires, pp 2901–2916

    Google Scholar 

  20. Bradley GL, Chang PC, McKenna GB (2001) Rubber modeling using uniaxial test data. J Appl Polym Sci 81(4):837–848

    Article  Google Scholar 

  21. Hariharaputhiran H, Saravanan U (2016) A new set of biaxial and uniaxial experiments on vulcanized rubber and attempts at modeling it using classical hyperelastic models. Mech Mater 92:211–222

    Article  Google Scholar 

  22. Mansouri MR, Darijani H (2014) Constitutive modelling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. Int J Solid Struct 51:4316–4326

    Article  Google Scholar 

  23. Moerman KM, Simms CK, Nagel T (2016) Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. J Mech Beh Biomed Mater 56:218–228

    Article  Google Scholar 

  24. Holzapfel GA (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238(2):290–302

    Article  MathSciNet  Google Scholar 

  25. Li D, Robertson AM (2009) A structural multi-mechanism constitutive equation for cerebral arterial tissue. Int J Solid Struct 46:2920–2928

    Article  MATH  Google Scholar 

  26. Shearer T (2015) A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure. J Biomech 48(2):290–297

    Article  Google Scholar 

  27. Holzapfel GA, Niestrawska JA, Ogden RW, Reinisch AJ, Schriefl AJ (2015) Modelling non-symmetric collagen fiber dispersion in arterial walls. J R Soc Interface 12:20150188

    Article  Google Scholar 

  28. Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solid Struct 41(14):3833–3848

    Article  MathSciNet  MATH  Google Scholar 

  29. Angeli S, Panayiotou C, Psimolophitis E, Nicolaou M, Constantinides C (2015) Uniaxial stress-strain characteristics of elastomeric membranes: theoretical considerations, computational simulations, and experimental validation. Mech Adv Mater Struct 22(12):996–1006

    Article  Google Scholar 

  30. Chen H, Zhao X, Lu X, Kassab GS (2016) Microstructure-based constitutive models for coronary artery adventitia. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 225–248

    Chapter  Google Scholar 

  31. Pierce DM, Maier F, Weisbecker H, Viertler C, Verbrugghe P, Famaey N, Holzapfel GA (2015) Human thoracic and abdominal aortic aneurysmal tissues: damage experiments, statistical analysis and constitutive modeling. J Mech Beh Biomed Mater 41:92–107

    Article  Google Scholar 

  32. Cooney GM, Moerman KM, Takaza M, Winter DC, Simms CK (2015) Uniaxial and biaxial mechanical properties of porcine linea alba. J Mech Beh Biomed Mater 41:68–82

    Article  Google Scholar 

  33. Santamaría VA, Siret O, Badel P, Guerin G, Novacek V, Turquier F, Avril S (2015) Material model calibration from planar tension tests on porcine linea alba. J Mech Beh Biomed Mater 43:26–34

    Article  Google Scholar 

  34. Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125(2):280–287

    Article  Google Scholar 

  35. Natali AN, Carniel EL, Pavan PG, Dario P, Izzo I (2006) Hyperelastic models for the analysis of soft tissue mechanics: definition of constitutive parameters. In: Biomedical Robotics and Biomechatronics, IEEE, pp 188–191

  36. Tricerri P, Dedè L, Gambaruto A, Quarteroni A, Sequeira A (2016) A numerical study of isotropic and anisotropic constitutive models with relevance to healthy and unhealthy cerebral arterial tissues. Int J Eng Sci 101:126–155

    Article  Google Scholar 

  37. Cortes DH, Elliott DM (2016) Modeling of collagenous tissues using distributed fiber orientations. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 15–40

    Chapter  Google Scholar 

  38. Gasser TC (2016) Histomechanical modeling of the wall of abdominal aortic aneurysm. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 57–78

    Chapter  Google Scholar 

  39. Kamenskiy AV, Pipinos II, Dzenis YA, Phillips NY, Desyatova AS, Kitson J, Bowen R, MacTaggart JN (2015) Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater 11:304–313

    Article  Google Scholar 

  40. Lee LC, Wenk J, Klepach D, Kassab GS, Guccione JM (2016) Structural-basedmodels of ventricular myocardium. In: Kassab GS, Sacks MS (eds) Structure-based mechanics of tissues and organs. Springer, New York, pp 249–264

    Chapter  Google Scholar 

  41. Fehervary H, Smoljkić M, Sloten JV, Famaey N (2016) Planar biaxial testing of soft biological tissue using rakes: a critical analysis of protocol and fitting process. J Mech Beh Biomed Mater 61:135–151

    Article  Google Scholar 

  42. Valanis KC, Landel RF (1967) The stored energy of a hyperelastic material in terms of the extension ratios. J Appl Phys 38:2997

    Article  Google Scholar 

  43. Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun Num Meth Eng 25(1):53–63

    Article  MathSciNet  MATH  Google Scholar 

  44. Kearsley EA, Zapas LJ (1980) Some methods of measurement of an elastic strain energy function of the valanis-landel type. J Rheol 24:483

    Article  Google Scholar 

  45. ADINA Theory and Modelling Guide (2012) ARD 12–8 (2012). ADINA R&D, Watertown

  46. Latorre M, Montáns FJ (2013) Extension of the Sussman-Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput Struct 122:13–26

    Article  Google Scholar 

  47. Latorre M, Montáns FJ (2014) What-you-prescribe-is-what-you-get orthotropic hyperelasticity. Comput Mech 53(6):1279–1298

    Article  MathSciNet  MATH  Google Scholar 

  48. Latorre M, Montáns FJ (2014) On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int J Solid Struct 51(7):1507–1515

    Article  Google Scholar 

  49. Fiala Z (2015) Discussion of “ On the interpretation of the logarithmic strain tensor in an arbitrary system of representation” by M. Latorre and F.J. Montáns. Int J Solid Struct 56—-57:290–291

    Article  Google Scholar 

  50. Latorre M, Montáns FJ (2015) Response to Fiala’s comments on “On the interpretation of the logarithmic strain tensor in an arbitrary system of representation”. Int J Solid Struct 56–57:292

  51. Neff P, Eidel B, Martin RJ (2015) Geometry of logarithmic strain measures in solid mechanics. arXiv:1505.02203 [MathDG]

  52. Latorre M, Montáns FJ (2015) Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains. Comput Mech 56:503–531

    Article  MathSciNet  MATH  Google Scholar 

  53. Latorre M, Montáns FJ (2016) Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains. Comput Struct 163:56–70

    Article  Google Scholar 

  54. Miñano M, Montáns FJ (2015) A new approach to modeling isotropic damage for Mullins effect in hyperelastic materials. Int J Solid Struct 67–68:272–282

  55. Latorre M, De Rosa E, Montáns FJ (2016) Understanding the need of the compression branch to characterize hyperelastic materials. Under review

  56. Latorre M, Romero X, Montáns FJ (2016) The relevance of transverse deformation effects in modeling soft biological tissues. Int J Solid Struct 99:57–70

  57. Romero X, Latorre M, Montáns FJ (2016) Determination of the WYPIWYG strain energy density of skin through finite element analysis of the experiments on circular specimens. Under review

  58. Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Ratón

    Google Scholar 

  59. Ogden RW (1972) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. P R Soc London A Math 326(1567):565–584

    Article  MATH  Google Scholar 

  60. Ogden RW (1973) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Ruber Chem Technol 46(2):398–416

    Article  Google Scholar 

  61. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

    Article  MATH  Google Scholar 

  62. Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solid Struct 40(11):2767–2791

    Article  MathSciNet  MATH  Google Scholar 

  63. Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69(1):59–61

    Article  MathSciNet  Google Scholar 

  64. Blatz PJ, Ko WL (1962) Application of finite elastic theory to the deformation of rubbery materials. T Soc Rheol 6:223–251

    Article  Google Scholar 

  65. Latorre M, Montáns FJ (2015) Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. Eur J Mech A Solid 53:99–106

    Article  MathSciNet  Google Scholar 

  66. Latorre M, Montáns FJ (2016) Stress and strain mapping tensors and general work-conjugacy in large strain continuum mechanics. Appl Math Model 40(5–6):3938–3950

    Article  MathSciNet  Google Scholar 

  67. Dierckx P (1993) Curve and surface fitting with splines. Oxford University Press, Oxford

    MATH  Google Scholar 

  68. Eubank RL (1999) Nonparametric regression and spline smoothing. Marcel Dekker, New York

    MATH  Google Scholar 

  69. Weinert HL (2013) Fast compact algorithms and software for spline smoothing. Springer, New York

    Book  MATH  Google Scholar 

  70. Latorre M, Montáns FJ (2017) WYPIWYG hyperelasticity: splines are fine and smoothing is soothing (forthcoming)

  71. Caminero MA, Montáns FJ, Bathe KJ (2011) Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comput Struct 89(11):826–843

    Article  Google Scholar 

Download references

Acknowledgments

Partial financial support for this work has been given by Grants DPI2011-26635 and DPI2015-69801-R from the Dirección General de Proyectos de Investigación of the Ministerio de Economía y Competitividad of Spain. F. J. Montáns also acknowledges the support of the Department of Mechanical and Aerospace Engineering of University of Florida during the sabbatical period in which this paper was finished and that of the Ministerio de Educación, Cultura y Deporte of Spain for the financial support for that stay under Grant PRX15/00065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Montáns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo, J., Latorre, M. & Montáns, F.J. WYPIWYG hyperelasticity for isotropic, compressible materials . Comput Mech 59, 73–92 (2017). https://doi.org/10.1007/s00466-016-1335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1335-6

Keywords

Navigation