Skip to main content
Log in

Partition of unity isogeometric analysis of two dimensional elliptic singular perturbation problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The design basis functions on the reference domain in IGA are diversified and enhanced by extra enrichment functions and various local refinements with the use of partition of unity (PU) function with flat-top. These reconditioned and modified basis functions are pushed forward to the physical domain by the original design mapping for analysis. With this method, the corresponding stiffness matrix has a small bandwidth and local refinement is simple. Moreover, we construct the PU functions in the reference domain and then move them to a physical domain through a geometric mapping to be used for the generation of global basis functions on a physical domain. Therefore, we also have several advantages in calculating stiffness matrices and load vectors. Here we apply this method to various boundary layer problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arnold DN, Falk RS (1989) Edge effects in the Reissner–Mindlin plate theory. In: Noor AK, Belytschko T, Simo JC (eds) Analytic and computational models of shells. ASME, New York

    Google Scholar 

  2. Babuška I, Banerjee U, Osborn JE (2003) Survey of meshless and generalized finite element methods: a unified approach. Acta Numer 12:1–125

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazilevs Y, Beirao Da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math Models Methods Appl Sci 16:1031–1090

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazilevs Y, Calo V, Cottrell J, Evans J, Hughes TJR, Lipton S, Scott M, Sederberg T (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

    Article  MathSciNet  MATH  Google Scholar 

  5. Borden MJ, Scott MA, Evans JA, Hughes TJR (2010) Isogeometric finite element data structures based on Bézer ext ration of NURBS. Int J Numer Methods Eng 87:15–47

    Article  MathSciNet  Google Scholar 

  6. Buffa A, Cho D, Sangalli G (2010) Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput Methods Appl Mech Eng 199:1437–1445

    Article  MathSciNet  MATH  Google Scholar 

  7. Branco C, Cho D (2014) Generalized T-splines and VMCR T-meshes. Comput Methods Appl Mech Eng 280:176–196

    Article  MathSciNet  Google Scholar 

  8. Branco C, Berdinsky D, Cho D, Oh MJ, Kim TW (2014) Trigonometric generalized T-splines. Comput Methods Appl Mech Eng 268:540–556

    Article  MathSciNet  MATH  Google Scholar 

  9. Da Veiga L, Buffa A, Cho D, Sangalli G (2012) Analysis suitable T-splines are dual-compatible. Comput Methods Appl Mech Eng 249–252:42–51

    Article  MathSciNet  MATH  Google Scholar 

  10. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEM. Wiley, New York

    Book  Google Scholar 

  11. Dorfel MR, Juttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199(5–8):264–275

    Article  MathSciNet  MATH  Google Scholar 

  12. Duarte CA, Oden JT (1996) An \(hp\) adaptive method using clouds. Comput Methods Appl Mech Eng 139:237–262

    Article  MathSciNet  MATH  Google Scholar 

  13. Griebel M, Schweitzer MA (2007) A particle-partition of unity methods part VII: adaptivity. In: Meshfree methods for partial differential equations III, lecture notes in computational science and engineering, vol 57, Springer, New York

  14. Han W, Meng X (2001) Error analysis of reproducing kernel particle method. Comput Methods Appl Mech Eng 190:6157–6181

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong Y, Jung C, Temam R (2014) On numerical approximation of stiff convection-diffusion equations in a circle. Numer Math 127(2):292–313

    Article  MathSciNet  Google Scholar 

  16. Hong Y, Jung C, Temam R (2015) Singular perturbation of time dependent convection-diffusion equations in a circle. Nonlinear Anal 119:127–148

    Article  MathSciNet  MATH  Google Scholar 

  17. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeong JW (2008) Implementation of reproducing polynomial particle(RPP) shape functions in meshless particle methods for two dimensional elliptic partial differential equations, PhD dissertation, University of North Carolina at Charlotte

  19. De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu MC (2011) X-FEM in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87:541–565

  20. S Li, WK Liu (2004) Meshfree particle methods. Springer, New York

    Google Scholar 

  21. Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method: part I. Theoretical formulation. Comput Methods Appl Mech Eng 193:933–951

    Article  MathSciNet  MATH  Google Scholar 

  22. Li S, Lu H, Han W, Liu WK, Simkins DC Jr. (2004) Reproducing kernel element method: part II. Globally conforming \(I^m/C^n\) hierarchies. Comput Methods Appl Mech Eng 193:953–987

  23. Melenk JM, Babuška I (1996) The partition of unity finite element method: theory and application. Comput Methods Appl Mech Eng 139:239–314

    Article  MATH  Google Scholar 

  24. Oh H-S, Kim JG, Hong WT (2008) The piecewise polynomial partition of unity shape functions for the generalized finite element methods. Comput Methods Appl Mech Eng 197:3702–3711

    Article  MathSciNet  MATH  Google Scholar 

  25. Oh H-S, Kim JG, Jeong JW (2007) The closed form reproducing polynomial particle shape functions for meshfree particle methods. Comput Methods Appl Mech Eng 196:3435–3461

    Article  MathSciNet  MATH  Google Scholar 

  26. Oh H-S, Kim JG, Jeong JW (2007) The smooth piecewise polynomial particle shape functions corresponding to patch-wise non-uniformly spaced particles for meshfree particles methods. Comput Mech 40:569–594

    Article  MathSciNet  MATH  Google Scholar 

  27. Oh H-S, Jeong JW, Hong WT (2010) The generalized product partition of unity for the meshes methods. J Comput Phys 229:100–1620

    Article  MathSciNet  Google Scholar 

  28. Oh H-S, Jeong JW, Kim JG (2007) The reproducing singularity particle shape function for problems containing singularities. Comput Mech 41:135–157

    Article  MathSciNet  MATH  Google Scholar 

  29. Jeong JW, Oh H-S, Kang S, Kim H (2013) Mapping techniques in isogeometric analysis for elliptic boundary value problems containing singularities. Comput Methods Appl Mech Eng 254:334–352

    Article  MathSciNet  MATH  Google Scholar 

  30. Oh H-S, Kim H, Jeong JW (2014) Enriched isogeometric analysis of elliptic boundary value problems in domains with crackes and/or corners. Int J Numer Meth Eng 97:149–180

    Article  MathSciNet  Google Scholar 

  31. Ciarlet PG (1991) Basic error estimates for elliptic problems, handbook of numerical analysis, vol 2. North-Holland, Amsterdam

    MATH  Google Scholar 

  32. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, New York

    MATH  Google Scholar 

  33. Rogers DF (2001) An introduction to NURBS. Academic Press, San Diego

    Google Scholar 

  34. Piegl L, Tiller W (1997) The NURBS book. Springer, New York 2nd ed

    Book  MATH  Google Scholar 

  35. Schillinger D, Evans JA, Reali A, Scott MA, Hughs TJR (2013) Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretization. Comput Methods Appl Mech Eng 267:170–232

    Article  MATH  Google Scholar 

  36. Strouboulis T, Copps K, Babuska I (2001) Generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193

    Article  MathSciNet  MATH  Google Scholar 

  37. Strouboulis T, Zhang L, Babuska I (2003) Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids. Comput Methods Appl Mech Eng 192:3109–3161

    Article  MathSciNet  MATH  Google Scholar 

  38. Szabo B, Babuska I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  39. Thomas DC, Scott MA, Evans JA, Tew K, Evans EJ (2015) Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Compt Methods Appl Mech Eng 284:55–105

    Article  MathSciNet  Google Scholar 

  40. Temme NM (2007) Analytical methods for an elliptic singular perturbation problems in a circle. J Comput Appl Math 207:301–322

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Bong Soo Jang was supported by the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2014R1A1A2A16051147)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Soo Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, B., Kim, H., Oh, HS. et al. Partition of unity isogeometric analysis of two dimensional elliptic singular perturbation problems. Comput Mech 58, 1019–1038 (2016). https://doi.org/10.1007/s00466-016-1330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1330-y

Keywords

Navigation