Skip to main content

Advertisement

Log in

Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a 3D computational model has been developed to investigate biofilms in a multi-physics framework using smoothed particle hydrodynamics (SPH) based on a continuum approach. Biofilm formation is a complex process in the sense that several physical phenomena are coupled and consequently different time-scales are involved. On one hand, biofilm growth is driven by biological reaction and nutrient diffusion and on the other hand, it is influenced by fluid flow causing biofilm deformation and interface erosion in the context of fluid and deformable solid interaction. The geometrical and numerical complexity arising from these phenomena poses serious complications and challenges in grid-based techniques such as finite element. Here the solution is based on SPH as one of the powerful meshless methods. SPH based computational modeling is quite new in the biological community and the method is uniquely robust in capturing the interface-related processes of biofilm formation such as erosion. The obtained results show a good agreement with experimental and published data which demonstrates that the model is capable of simulating and predicting overall spatial and temporal evolution of biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rittmann BE, McCarty PL (1980) Model of steady-state-biofilm kinetics. Biotechnol Bioeng 22:2343–2357

    Article  Google Scholar 

  2. Wanner GW (1986) A multispecies biofilm model. Biotechnol Bioeng 28(3):314–328

    Article  Google Scholar 

  3. Picioreanu C, Loosdrecht MCM, Heijnen JJ (1999) Discrete-differential modeling of biofilm structure. Water Sci Technol 39:115–122

    Article  Google Scholar 

  4. Picioreanu C, Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study, Biotechnol Bioeng 69:504–515

    Article  Google Scholar 

  5. Picioreanu C, Loosdrecht MCM, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218

    Article  Google Scholar 

  6. Alpkvist E, Klapper I (2007) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69:765–789

    Article  MATH  Google Scholar 

  7. Dillon R, Fauci L, Fogelson A, Gaver D (1996) Modeling biofilm processes using the immersed boundary method. J Comput Phys 129(1):57–73

    Article  MATH  Google Scholar 

  8. Kreft J-U, Booth G (1998) BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275–3287

    Article  Google Scholar 

  9. Kreft J-U, Picioreanu C (2001) Individual-based modeling of biofilms. Microbiology 147:2897–2912

    Article  Google Scholar 

  10. Kreft J-U, Picioreanu C, Wimpenny JWT (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70:3024–3040

    Article  Google Scholar 

  11. Tang Y, Valocchi AJ (2013) An improved cellular automaton method to model multispecies biofilms. Water Res 47:5729–5742

    Article  Google Scholar 

  12. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57(6):718–731

    Article  Google Scholar 

  13. Noguera DR, Pizarro G, Stahl DA, Rittmann BE (1999) Simulation of multispecies biofilm development in three dimensions. Water Sci Technol 39(7):123–130

    Article  Google Scholar 

  14. Fujikawa H, Matsushita M (1989) Fractal growth of bacillus subtilis on agar plates. J Phys Soc Jpn 58:3875–3878

    Article  Google Scholar 

  15. Picioreanu C, Kreft J-U, Van Loosdrecht MCM (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70(5):3024–3040

    Article  Google Scholar 

  16. Eberl HJ, Parker DF, Van Loosdrecht MCM (2001) A new deterministic spatio-temporal continuum model for biofilm development. J Theor Med 3:161–175

    Article  MATH  Google Scholar 

  17. Lardon LA, Merkey BV, Martins S, D\({\ddot{o}}\)tsch A, Kreft JU, Picioreanu C, Wimpenny JWT, Smets BF (2011) iDynoMiCS: next-generation individual-based modeling of biofilms. Environ Microbiol 13(9):2416–2434

  18. Cumsille P, Asenjo JA, Conca Carlos (2014) A novel model for biofilm growth and its resolution by using the hybrid immersed interface-level set method. Comput Math Appl 67:34–51

    Article  MathSciNet  Google Scholar 

  19. Dockery J, Klapper I (2001) Finger formation in biofilm layers. SIAM J Appl Math 62(3):853–869

    MathSciNet  MATH  Google Scholar 

  20. Cogan N (2008) Two-fluid model of biofilm disinfection. Bull Math Biol 70:800–819

    Article  MathSciNet  MATH  Google Scholar 

  21. Jones GW, Chapman SJ (2012) Modeling growth in biological materials. SIAM Rev 54(1):52–118

    Article  MathSciNet  MATH  Google Scholar 

  22. Kroon W, Delhaas T, Arts T, Bovendeerd P (2009) Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech Model Mechanobiol 8:301–309

    Article  Google Scholar 

  23. Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci 42:8811–8823

    Article  Google Scholar 

  24. Ambrosi D, Ateshian GA, Arruda EM, Ben M, Amar SC, Cowin J, Dumais A, Goriely GA, Holzapfel JD, Humphrey R, Kemkemer E, Kuhl J, Ma JE, Olberding LA, Taber R Vandiver, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59:863–883

    Article  MathSciNet  MATH  Google Scholar 

  25. Taber LA (1995) Biomechanics of growth, remodeling and morphogenesis. Appl Mech Rev 48:487–545

    Article  Google Scholar 

  26. Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. Trans ASME J Biomech Eng 120:348–354

    Article  Google Scholar 

  27. Bakke R (1986) Biofilm deattachment, PhD thesis, Montana State University

  28. Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81:607–617

    Article  Google Scholar 

  29. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2001) Two-dimensionalmodel of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218

    Article  Google Scholar 

  30. Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103(1):92–104

    Article  Google Scholar 

  31. Boel M, Moehle RB, Haesner M, Neu TR, Horn H, Krull R (2009) 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol Bioeng 103:177–186

    Article  Google Scholar 

  32. Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1998) Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol Bioeng 57(5):536–544

    Article  Google Scholar 

  33. Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1998a) Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65:83–92

    Article  Google Scholar 

  34. Alpkvist E, Klapper I (2007) Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci Technol 55(89):265–273

    Article  Google Scholar 

  35. Zhijie X, Meakin P, Tartakovsky A, Scheibe TD (2011) Dissipative-particle-dynamics model of biofilm growth. Phys Rev E 83:066702

    Article  Google Scholar 

  36. Xavier JD, van Picioreanu C (2005a) A general description of detachment for multidimensional modeling of biofilms. Biotechnol Bioeng 91(6):651–669

    Article  Google Scholar 

  37. Duddu R, Bordas S, Chopp D, Moran B (2008) A combined extended finite element and level set method for biofilm growth. Int J Numer Methods Eng 74:848–870

    Article  MathSciNet  MATH  Google Scholar 

  38. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375

    Article  MATH  Google Scholar 

  39. Lucy LB (1977) Numerical approach to the testing of the fission hypothesis. Astron J 82:1013

    Article  Google Scholar 

  40. Cleary PW, Monaghan JJ (1999) Conduction modeling using smoothed particle hydrodynamics. J Comput Phys 148:227–264

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhu Yi, Fox PJ (2001) Smoothed particle hydrodynamics model for diffusion through porous media. Transp Porous Media 43:441–471

    Article  Google Scholar 

  42. Aristodemo F, Federico I, Veltri P (2010) Two-phase SPH modeling of advective diffusion processes. Environ Fluid Mech 10:451–470

    Article  Google Scholar 

  43. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  44. Gomez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJ (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27

    Article  Google Scholar 

  45. Kristof P, Benes B, Krivanek J, Stava O (2009) Hydraulic erosion using smoothed particle hydrodynamics. Comput Gr Forums 28:219–228

    Article  Google Scholar 

  46. Tartakovsky AM, Meakin P, Scheibe TD (2007) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J Comput Phys 222:654–672

    Article  MathSciNet  MATH  Google Scholar 

  47. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662

    Article  MATH  Google Scholar 

  48. Libersky Larry D, Petschek Albert G, Carney Theodore C, Hipp Jim R, Allahdadi Firooz A (1993) High strain lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75

    Article  MATH  Google Scholar 

  49. Simo JC, Pister KS (1984) Remarks on rate constitutive equation for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–205

    Article  MATH  Google Scholar 

  50. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluidstructure interaction by SPH. Comput Struct 85:879–890

    Article  Google Scholar 

  51. Boffin HMJ, Anzer U (1994) Numerical studies of wind accretion using SPH. Astron Astrophys 284:1026–1036

    Google Scholar 

  52. Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mondaini RP, Pardalos PM (eds) Mathematical modeling of bio-systems. Springer, Berlin, pp 1–44

    Google Scholar 

  53. Hauser M, Vafai K (2013) Analysis of the multidimensional effects in biofilms. Int J Heat Mass Transf 56:340–349

    Article  Google Scholar 

  54. Qing Y, Fish J (2002) Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales. Int J Solids Struct 39:6429–6452

    Article  MATH  Google Scholar 

  55. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 3:543–574

    Article  Google Scholar 

  56. Volokh KY (2006) Stresses in growing soft tissues. Acta Biomater 2:493–504

    Article  Google Scholar 

  57. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  MathSciNet  MATH  Google Scholar 

  58. Li S, Liu WK (2002) Mesh-free and particle methods and their applications. Appl Mech 55(1):1–34

    Article  Google Scholar 

  59. Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun 180:1811–1820

    Article  MathSciNet  MATH  Google Scholar 

  60. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231:7057–7075

    Article  MathSciNet  Google Scholar 

  61. Wriggers P (2008) Non-linear finite element method. Springer, Heidelberg

    MATH  Google Scholar 

  62. Valizadeh A, Monaghan JJ (2015) A study of solid wall models for weakly compressible SPH. J Comput Phys 300:5–19

    Article  MathSciNet  Google Scholar 

  63. Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:1359–1400

    Article  MathSciNet  MATH  Google Scholar 

  64. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311

    Article  MATH  Google Scholar 

  65. Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389

    Article  MATH  Google Scholar 

  66. Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng 80(3):289–296

    Article  Google Scholar 

  67. Stewart PS (2012) Convection around biofilms. J Bio-adhes Biofilm Res 28(2):187–198

    Article  Google Scholar 

  68. Hermansson Malte (1999) The DLVO theory in microbial adhesion. Colloids Surf B 14:105–119

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support of this research by Ministry of Science and Technology ,Nidersachsen, Germany in the context of MARIO graduate program in the Institute Of Continuum Mechanics (IKM) at Leibniz university of Hannover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Soleimani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 19646 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M., Wriggers, P., Rath, H. et al. Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method. Comput Mech 58, 619–633 (2016). https://doi.org/10.1007/s00466-016-1308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1308-9

Keywords

Navigation