Skip to main content
Log in

Microstructure in plasticity without nonconvexity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A simplified one dimensional rate dependent model for the evolution of plastic distortion is obtained from a three dimensional mechanically rigorous model of mesoscale field dislocation mechanics. Computational solutions of variants of this minimal model are investigated to explore the ingredients necessary for the development of microstructure. In contrast to prevalent notions, it is shown that microstructure can be obtained even in the absence of non-monotone equations of state. In this model, incorporation of wave propagative dislocation transport is vital for the modeling of spatial patterning. One variant gives an impression of producing stochastic behavior, despite being a completely deterministic model. The computations focus primarily on demanding macroscopic limit situations, where a convergence study reveals that the model-variant including non-monotone equations of state cannot serve as effective equations in the macroscopic limit; the variant without non-monotone ingredients, in all likelihood, can.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abeyaratne R, Chu C, James RD (1996) Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu–Al–Ni shape memory alloy. Philos Mag A 73(2):457–497

    Article  Google Scholar 

  2. Acharya A (2010) New inroads in an old subject: plasticity, from around the atomic to the macroscopic scale. J Mech Phys Solids 58(5):766–778

    Article  MathSciNet  MATH  Google Scholar 

  3. Acharya A, Beaudoin AJ (2000) Grain-size effect in viscoplastic polycrystals at moderate strains. J Mech Phys Solids 48(10):2213–2230

    Article  MATH  Google Scholar 

  4. Acharya A, Roy A (2006) Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I. J Mech Phys Solids 54(8):1687–1710

    Article  MathSciNet  MATH  Google Scholar 

  5. Acharya A, Tang H, Saigal S, Bassani JL (2004) On boundary conditions and plastic strain-gradient discontinuity in lower-order gradient plasticity. J Mech Phys Solids 52(8):1793–1826

    Article  MathSciNet  MATH  Google Scholar 

  6. Acharya A, Tartar L (2011) On an equation from the theory of field dislocation mechanics. Boll dell’Unione Mat Ital 9:409–444

    MathSciNet  MATH  Google Scholar 

  7. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106(4):326–330

    Article  Google Scholar 

  8. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics, vol 14. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  9. Chen YS, Choi W, Papanikolaou S, Sethna JP (2010) Bending crystals: emergence of fractal dislocation structures. Phys Rev Lett 105(10):105501

    Article  Google Scholar 

  10. Chen YS, Choi W, Papanikolaou S, Bierbaum M, Sethna JP (2013) Scaling theory of continuum dislocation dynamics in three dimensions: self-organized fractal pattern formation. Int J Plast 46:94–129

    Article  Google Scholar 

  11. Choi W, Chen YS, Papanikolaou S, Sethna JP (2012) Is dislocation flow turbulent in deformed crystals? Comput Sci Eng 14(1):33–39

    Article  Google Scholar 

  12. Das A, Acharya A, Zimmer J, Matthies K (2013) Can equations of equilibrium predict all physical equilibria? A case study from Field Dislocation Mechanics. Math Mech Solids 18(8):803–822

    Article  Google Scholar 

  13. Dimiduk DM, Woodward C, LeSar R, Uchic MD (2006) Scale-free intermittent flow in crystal plasticity. Science 312(5777):1188–1190

    Article  Google Scholar 

  14. Glazov M, Llanes LM, Laird C (1995) Self-organized dislocation structures (SODS) in fatigued metals. Phys Status Solidi (a) 149(1):297–321

    Article  Google Scholar 

  15. Kreiss HO, Lorenz J (1989) Initial-boundary value problems and the Navier–Stokes equations, Vol. 47 of Classics in Applied Mathematics Series. SIAM, Philadelphia

    Google Scholar 

  16. Kurganov A, Noelle S, Petrova G (2001) Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J Sci Comput 23(3):707–740

    Article  MathSciNet  MATH  Google Scholar 

  17. Limkumnerd S, Sethna JP (2006) Mesoscale theory of grains and cells: crystal plasticity and coarsening. Phys Rev Lett 96(9):095503

    Article  Google Scholar 

  18. Mughrabi H, Ackermann FU, Herz K (1979) Persistent slip bands in fatigued face-centered and body-centered cubic metals. Fatigue Mech ASTM STP 675:69–105

    Article  Google Scholar 

  19. Ortiz M, Repetto EA (1999) Nonconvex energy minimization and dislocation structures in ductile single crystals. J Mech Phys Solids 47(2):397–462

    Article  MathSciNet  MATH  Google Scholar 

  20. Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR (2007) Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr Mater 56(4):313–316

    Article  Google Scholar 

  21. Rice JR (1971) Inelastic constitutive relations for solids: an intenal-variable theory and its application to metal plasticity. J Mech Phys Solids 19(6):433–455

    Article  MATH  Google Scholar 

  22. Roy A, Acharya A (2006) Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part II. J Mech Phys Solids 54(8):1711–1743

    Article  MathSciNet  MATH  Google Scholar 

  23. Tartar L (2009) The general theory of homogenization. In: Rangarajan A, Vemuri B, Yuille AL (eds) Lecture notes of the unione matematica Italiana. Springer, Heidelberg

    Google Scholar 

  24. Xia S, El-Azab A (2015) Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Model Simul Mater Sci Eng 23(5):055009

    Article  Google Scholar 

  25. Walgraef D, Aifantis EC (1985) On the formation and stability of dislocation patterns–I: one-dimensional considerations. Int J Eng Sci 23(12):1351–1358

  26. Walgraef D, Aifantis EC (1985) On the formation and stability of dislocation patterns–II: two-dimensional considerations. Int J Eng Sci 23(12):1359–1364

    Article  MATH  Google Scholar 

  27. Walgraef D, Aifantis EC (1985) On the formation and stability of dislocation patterns–III: three-dimensional considerations. Int J Eng Sci 23(12):1365–1372

    Article  MATH  Google Scholar 

  28. Zhang X, Acharya A, Walkington NJ, Bielak J (2015) A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations. J Mech Phys Solids 84:145–195

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

AA acknowledges support in part from Grants NSF-CMMI-1435624, NSF-DMS-1434734, and ARO W911NF-15-1-0239. PS acknowledges the support of the Labex MEC and of A*Midex through Grants ANR-11- LABX-0092 and ANR-11-IDEX-0001-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Acharya.

Appendix 1

Appendix 1

1.1 Simplified one-dimensional form of conservation law of Burgers vector content

The conservation law for Burgers vector content in mesoscale field dislocation mechanics is given by

$$\begin{aligned} \dot{{\varvec{\alpha }} }=-curl\left( {{\varvec{\alpha }} \times {\varvec{V}}+{\varvec{L}}^{p}} \right) \end{aligned}$$
(41)

where \({\varvec{\alpha }} \) is the mesoscale Nye tensor, \({\varvec{V}}\) is the mesoscale averaged dislocation velocity vector, and \({\varvec{L}}^{p}\) is the plastic strain rate produced by unresolved, at the mesoscale, and hence ‘statistical’ dislocations [4]. Here,

$$\begin{aligned} -curl~{\varvec{U}}^{p}={\varvec{\alpha }}. \end{aligned}$$
(42)

Consider a tensor field of the form

$$\begin{aligned} {\varvec{A}}=A_{12} {\varvec{e}}_1 \otimes {\varvec{e}}_2 \end{aligned}$$
(43)

and we assume that all fields vary in only the \(x_3 \) direction. Then the only non-zero component of

$$\begin{aligned} \left( {curl~{\varvec{A}}} \right) _{ri} =e_{ijk} A_{rk,j} \end{aligned}$$
(44)

is

$$\begin{aligned} \left( {curlA} \right) _{11} =e_{132} A_{12,3} =-A_{12,3}. \end{aligned}$$
(45)

We assume the ansatz

$$\begin{aligned}&{\varvec{U}}^{p}=U_{12}^p {\varvec{e}}_1 \otimes {\varvec{e}}_2 \nonumber \\&{\varvec{L}}^{p}=L_{12}^p {\varvec{e}}_1 \otimes {\varvec{e}}_2 \nonumber \\&{\varvec{\alpha }} =\alpha _{11} {\varvec{e}}_1 \otimes {\varvec{e}}_1 \nonumber \\&{\varvec{V}}=V_3 {\varvec{e}}_3 . \end{aligned}$$
(46)

Then

$$\begin{aligned}&{\varvec{\alpha }} \times {\varvec{V}}=-\alpha _{11} V_3 {\varvec{e}}_1 \otimes {\varvec{e}}_2\end{aligned}$$
(47)
$$\begin{aligned}&-\left[ {curl\left( {{\varvec{\alpha }} \times {\varvec{V}}} \right) } \right] =-\left[ {-\left( {-\alpha _{11} V_3 } \right) _{,3} } \right] {\varvec{e}}_1 \otimes {\varvec{e}}_1\end{aligned}$$
(48)
$$\begin{aligned}&-curl~{\varvec{L}}^{p}=-\left[ {-L_{12,3}^p } \right] {\varvec{e}}_1 \otimes {\varvec{e}}_1\end{aligned}$$
(49)
$$\begin{aligned}&{\varvec{\alpha }} =-curl~{\varvec{U}}^{p}=-\left[ {-U_{12,3}^p } \right] {\varvec{e}}_1 \otimes {\varvec{e}}_1 . \end{aligned}$$
(50)

Denoting \(U_{12}^p =\varphi \), \(x_3 =x, \;x_1 =y,\;x_2 =z\), \(V_3=V\), and \(L_{12}^p =L^{p}\) the conservation law reduces to the equation

$$\begin{aligned} \left( {\varphi _x } \right) _t =-\left( {\varphi _x V-L^{p}} \right) _x. \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Acharya, A. & Suquet, P. Microstructure in plasticity without nonconvexity. Comput Mech 57, 387–403 (2016). https://doi.org/10.1007/s00466-015-1249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1249-8

Keywords

Navigation