Skip to main content
Log in

Computing intersections between non-compatible curves and finite elements

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a method to find all intersections between curved lines such as structural line elements and finite element meshes with intentions to generate smaller, non-compatible, line cells (e.g. bar elements) between crossings. The intersection finding algorithm works for two and three-dimensional meshes constituted by linear, quadratic or higher order elements. Using the proposed algorithm, meshes can then be automatically prepared for finite element analyses with techniques for embedding elements within others or analyses that require lines within solids. The application of the method is demonstrated by a number of numerical examples illustrating its capabilities in handling complex geometries, relative speed and convenience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Barzegar F, Maddipudi S (1994) Generating reinforcement in FE modeling of concrete structures. J Struct Eng 120(5):1656–1662. doi:10.1061/(ASCE)0733-9445(1994)120:5(1656)

    Article  Google Scholar 

  2. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Nonlinear finite elements for continua and structures. Wiley, New York

    Google Scholar 

  3. CGAL P (2014) CGAL User and Reference Manual, 4.4 edn. CGAL Editorial Board. http://doc.cgal.org/4.4/Manual/packages.html

  4. Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York. doi:10.1002/9780470749081

    Book  Google Scholar 

  5. Durand R (2008) Three-dimensional analysis of geotechnical structures subject to reinforcement and drainage. Ph.D. thesis, University of Brasilia

  6. Durand R, Farias M, Pedroso D (2015) Modelling the strengthening of solids with incompatible line finite elements. Comput Struct. Under review

  7. Elwi A, Hrudey T (1989) Finite element model for curved embedded reinforcement. J Eng Mech 115(4):740–754. doi:10.1061/(ASCE)0733-9399(1989)115:4(740)

    Article  Google Scholar 

  8. Farias MM, Naylor DJ (1998) Safety analysis using finite elements. Comput Geotech 22(2):165–181. doi:10.1016/S0266-352X(98)00005-6

    Article  Google Scholar 

  9. Hartl H (2002) Development of a continuum-mechanics-based tool for 3d finite element analysis of reinforced concrete structures and application to problems of soil-structure interaction. Ph.D. thesis, Graz University of Technology, Institute of Structural Concrete

  10. Hughes T (2000) The finite element method: linear static and dynamic finite element analysis. Dover civil and mechanical engineering series. Dover Publications, New York

    Google Scholar 

  11. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195. doi:10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  12. Jendele L, Cervenka J (2006) Finite element modelling of reinforcement with bond. Comput Struct 84(28):1780–1791. doi:10.1016/j.compstruc.2006.04.010

    Article  Google Scholar 

  13. Markou G, Papadrakakis M (2013) Computationally efficient 3D finite element modeling of RC structures. Comput Concr 12(4):443–498. doi:10.12989/cac.2013.12.4.443

  14. Paraview D (2014) ParaView Data analysis and visualisation application. http://www.paraview.org

  15. Phillips D, Zienkiewicz O (1976) Finite element non-linear analysis of concrete structures. ICE Proc 61(1):59–88. doi:10.1680/iicep.1976.3503

    Article  Google Scholar 

  16. Wriggers P (2008) Nonlinear finite element methods. Springer, New York. doi:10.1007/978-3-540-71001-1

    MATH  Google Scholar 

  17. Zhou Y, Cheuk C, Tham L (2009) An embedded bond-slip model for finite element modelling of soil-nail interaction. Comput Geotech 36(6):1090–1097. doi:10.1016/j.compgeo.2009.03.002

    Article  Google Scholar 

Download references

Acknowledgments

The support of the Australian Research Council (ARC), under grant DE120100163, and the Brazilian Research Council (CNPq) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorival M. Pedroso.

Additional information

Australian Research Council grant DE120100163 and Brazilian Reseach Council CNPq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand, R., Farias, M.M. & Pedroso, D.M. Computing intersections between non-compatible curves and finite elements. Comput Mech 56, 463–475 (2015). https://doi.org/10.1007/s00466-015-1181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1181-y

Keywords

Navigation