Skip to main content
Log in

Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This manuscript presents the formulation and implementation of the variational multiscale enrichment (VME) method for the analysis of elasto-viscoplastic problems. VME is a global–local approach that allows accurate fine scale representation at small subdomains, where important physical phenomena are likely to occur. The response within far-fields is idealized using a coarse scale representation. The fine scale representation not only approximates the coarse grid residual, but also accounts for the material heterogeneity. A one-parameter family of mixed boundary conditions that range from Dirichlet to Neumann is employed to study the effect of the choice of the boundary conditions at the fine scale on accuracy. The inelastic material behavior is modeled using Perzyna type viscoplasticity coupled with flow stress evolution idealized by the Johnson–Cook model. Numerical verifications are performed to assess the performance of the proposed approach against the direct finite element simulations. The results of verification studies demonstrate that VME with proper boundary conditions accurately model the inelastic response accounting for material heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mote CD (1971) Global–local finite element. Int J Numer Methods Eng 3:565–574

    Article  MATH  MathSciNet  Google Scholar 

  2. Fish J, Markolefas S (1994) Adaptive global–local refinement strategy based on the interior error estimates of the h-method. Int J Numer Methods Eng 37:827–838

    Article  MATH  MathSciNet  Google Scholar 

  3. Gendre L, Allix O, Gosselet P, Comte F (2009) Non-intrusive and exact global/local techniques for structural problems with local plasticity. Comput Mech 44:233–245

    Article  MATH  MathSciNet  Google Scholar 

  4. Mao KM, Sun CT (1991) A refined global–local finite element analysis method. Int J Numer Methods Eng 32:29–43

    Article  MATH  Google Scholar 

  5. Noor AK (1986) Global–local methodologies and their application to nonlinear analysis. Finite Elem Anal Des 2:333–346

    Article  Google Scholar 

  6. Fish J (1992) The s-version of the finite element method. Comput Struct 43:539–547

    Article  MATH  Google Scholar 

  7. Lloberas-Valls O, Rixen DJ, Simone A, Sluys LJ (2011) Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials. Comput Methods Appl Mech Eng 200:1577–1590

    Article  MATH  MathSciNet  Google Scholar 

  8. Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput Methods Appl Mech Eng 197:487–504

    Article  MATH  MathSciNet  Google Scholar 

  9. Markovic D, Ibrahimbegovic A (2004) On micro–macro interface conditions for micro scale based fem for inelastic behavior of heterogeneous materials. Comput Methods Appl Mech Eng 193:5503–5523

    Article  MATH  Google Scholar 

  10. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the dirichlet-to-neumann formulation, subgrid-scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  11. Hughes TJR, Feijoo GR, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24

    Article  MATH  MathSciNet  Google Scholar 

  12. Garikipati K, Hughes TJR (2000) A variational multiscale approach to strain localization formulation for multidimensional problems. Comput Methods Appl Mech Eng 188:39–60

    Article  MATH  MathSciNet  Google Scholar 

  13. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539–557 (ISSN 00361429)

    Article  MATH  MathSciNet  Google Scholar 

  14. Arbogast T (2002) Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Comput GeoSci 6:453–481

    Article  MATH  MathSciNet  Google Scholar 

  15. Arbogast T (2004) Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM J Numer Anal 42:576

    Article  MATH  MathSciNet  Google Scholar 

  16. Oskay C (2012) Variational multiscale enrichment for modeling coupled mechano-diffusion problems. Int J Numer Methods Eng 89:686–705

    Article  MATH  MathSciNet  Google Scholar 

  17. Oskay C (2013) Variational multiscale enrichment method with mixed boundary conditions for modeling diffusion and deformation problems. Comput Methods Appl Mech Eng 264:178–190

    Article  MATH  MathSciNet  Google Scholar 

  18. Baiocchi C, Brezzi F, Franca LP (1993) Virtual bubbles and the Galerkin-least-squares method. Comput Methods Appl Mech Eng 105:125–142

    Article  MATH  MathSciNet  Google Scholar 

  19. Brezzi F, Franca LP, Hughes TJR, Russo A (1997) \(b=\int \!\! g\). Comput Methods Appl Mech Engrg 145:329–339

    Article  MATH  MathSciNet  Google Scholar 

  20. Juanes R, Dub F-X (2008) A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms. Comput Geosci 12:273–295

    Article  MATH  MathSciNet  Google Scholar 

  21. Garikipati K (2003) Variational multiscale methods to embed the macromechanical continuum formulation with fine-scale strain gradient theories. Int J Numer Methods Eng 57:1283–1298

    Article  MATH  MathSciNet  Google Scholar 

  22. Masud A, Xia K (2006) A variational multiscale method for inelasticity: application to superelasticity in shape memory alloys. Comput Methods Appl Mech Eng 195:4512–4531

    Article  MATH  MathSciNet  Google Scholar 

  23. Yeon J, Youn S (2008) Variational multiscale analysis of elastoplastic deformation using meshfree approximation. Int J Solids Struct 45:4709–4724

    Article  MATH  Google Scholar 

  24. Hund A, Ramm E (2007) Locality constraints within multiscale model for non-linear material behaviour. Int J Numer Methods Eng 70:1613–1632

    Article  MATH  MathSciNet  Google Scholar 

  25. Qian D, Wagner GJ, Liu WK (2004) A multiscale projection method for the analysis of carbon nanotubes. Comput Methods Appl Mech Eng 193:1603–1632

    Article  MATH  Google Scholar 

  26. Berger-Vergiat L, Waisman H, Hiriyur B, Tuminaro R, Keyes D (2012) Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods. Int J Numer Methods Eng 90:311–328

    Article  MATH  MathSciNet  Google Scholar 

  27. Hiriyur B, Tuminaro RS, Waisman H, Boman EG, Keyes DE (2012) A quasi-algebraic multigrid approach to fracture problems based on extended finite elements. SIAM J Sci Comput 34:A603–A626

  28. Waisman H, Berger-Vergiat L (2013) An adaptive domain decomposition preconditioner for crack propagation problems modeled by xfem. Int J Multisc Comp Eng 633–654:2013

    Google Scholar 

  29. Oskay C, Haney M (2010) Computational modeling of titanium structures subjected to thermo-chemo-mechanical environment. Int J Solids Struct 47:3341–3351

  30. Yan H, Oskay C (2014) A three-field (displacement–pressure–concentration) formulation for coupled transport–deformation problems. Finite Elem Anal Des 90:20–30

    Article  Google Scholar 

  31. Yan H, Oskay C (2015) A viscoelastic–viscoplastic model of titanium structures subjected to thermo-chemo-mechanical environment. Int J Solids Struct 56–57:29–42

    Article  Google Scholar 

  32. Garikipati K, Hughes TJR (1998) A study of strain localization in a multiple scale framework—the one-dimensional problem. Comput Methods Appl Mech Eng 159:193–222

    Article  MATH  MathSciNet  Google Scholar 

  33. Coenen EWC, Kouznetsova VG, Geers MGD (2012) Novel boundary conditions for strain localization analyses in microstructural volume elements. Int J Numer Methods Eng 90:1–21

    Article  MATH  MathSciNet  Google Scholar 

  34. Ghosh S, Paquet D (2013) Adaptive concurrent multi-level model for multi-scale analysis of ductile fracture in heterogeneous aluminum alloys. Mech Mater 65:12–34

    Article  Google Scholar 

  35. Mergheim J (2009) A variational multiscale method to model crack propagation at finite strains. Int J Numer Methods Eng 80:269–289

    Article  MATH  MathSciNet  Google Scholar 

  36. Langtangen HP (2003) Computational partial differential equations: numerical methods and diffpack programming. Springer, Berlin

    Google Scholar 

  37. Crouch R, Oskay C (2010) Symmetric meso-mechanical model for failure analysis of heterogeneous materials. Int J Solids Struct 8:447–461

    Google Scholar 

  38. Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput Methods Appl Mech Eng 196:1216–1243

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the research funding from the Air Force Office of Scientific Research Multi-Scale Structural Mechanics and Prognosis Program (Grant No.: FA9550-13-1-0104. Program Manager: Dr. David Stargel). We also acknowledge the technical cooperation with Dr. Ravinder Chona and Dr. Ravi Penmetsa at the Air Force Research Laboratory, Structural Sciences Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caglar Oskay.

Appendix

Appendix

This appendix section presents the details of \(\mathbf{C} = \left( \frac{\partial \dot{\varvec{\varepsilon }}^{vp}}{\partial \varvec{\sigma } }\right) \) and \(\mathbf{G} = \left( \frac{\partial \dot{\varvec{\varepsilon }}^{vp}}{\partial \varvec{\varepsilon }^{vp} }\right) \) that are illustrated in Sect. 4.1. For the clarity of presentation, the bold symbol in this section denotes vector notation. Recall the evoluation of plastic strain (Eq. (5)), the loading function [Eq. (6)] and the flow stress [Eq. (8)]. Define

$$\begin{aligned} F\equiv \frac{f(\varvec{\sigma }, \varvec{\varepsilon }^{vp})}{{\sigma _y}(\varvec{\varepsilon }^{vp}) } \end{aligned}$$
(60)

and

$$\begin{aligned} \mathbf{a}\equiv \frac{\partial f(\varvec{\sigma }, \varvec{\varepsilon }^{vp})}{\partial \varvec{\sigma }} =\sqrt{3} \frac{\partial \bar{{\sigma }}}{\partial \varvec{\sigma }} =\frac{\sqrt{3}}{2 \bar{{\sigma }}} \tilde{\varvec{\sigma }} \end{aligned}$$
(61)

where, in 3D case \(\tilde{\varvec{\sigma }}\) is expressed in a vector format as:

$$\begin{aligned} \tilde{\varvec{\sigma }}=\left\{ {s_{xx}}, {s_{yy}},{s_{zz}},2{\sigma _{xy}},2{\sigma _{yz}},2{\sigma _{zx}}\right\} ^\mathrm{T} \end{aligned}$$
(62)

in which \(s\) denotes deviatoric stress components. Consequently, the plastic strain evolution equation is expressed as:

$$\begin{aligned} \dot{\varvec{\varepsilon }}^{vp}=\gamma \left\langle F \right\rangle ^{q} \mathbf{a} \end{aligned}$$
(63)

and \(\mathbf{C}\) becomes:

$$\begin{aligned} \begin{aligned} \mathbf{C} = \left( \frac{\partial \dot{\varvec{\varepsilon }}^{vp}}{\partial \varvec{\sigma } }\right)&=\gamma \left[ \left\langle F \right\rangle ^{q}\frac{\partial \mathbf{a}}{\partial \varvec{\sigma } } + q \left\langle F \right\rangle ^{q-1} \frac{\partial \left\langle F \right\rangle }{\partial f} \frac{\partial f}{\partial \varvec{\sigma } } \otimes \mathbf{a}\right] \\&=\gamma \left\langle F \right\rangle ^{q} \left[ \frac{\partial \mathbf{a}}{\partial \varvec{\sigma } } + \frac{q \left[ \text {sign}(F) +1\right] }{2 \left\langle f \right\rangle } \mathbf{a} \otimes \mathbf{a}\right] \end{aligned} \end{aligned}$$
(64)

From Eq. (61):

$$\begin{aligned} \begin{aligned} \frac{\partial \mathbf{a}}{\partial \varvec{\sigma } }=\frac{\sqrt{3}}{2 \bar{{\sigma }}} \mathbf{M}-\frac{\sqrt{3}}{3 \bar{{\sigma }}} \mathbf{a} \otimes \mathbf{a}; \mathbf{M}=\frac{\partial \tilde{\varvec{\sigma }}}{\partial \varvec{\sigma }} \end{aligned} \end{aligned}$$
(65)

In 3D case, \(\mathbf{M}\) is expressed as:

$$\begin{aligned} \mathbf{M}= \left[ {\begin{array}{lllccc} \frac{2}{3}\, &{}\quad -\frac{1}{3}\, &{}\quad -\frac{1}{3}\, &{}\quad 0\, &{}\quad 0\, &{}\quad 0 \\ -\frac{1}{3}\, &{}\quad \frac{2}{3}\, &{}\quad -\frac{1}{3}\, &{}\quad 0\, &{}\quad 0\, &{}\quad 0 \\ -\frac{1}{3}\, &{} \quad -\frac{1}{3}\, &{}\quad \frac{2}{3}\, &{}\quad 0\, &{}\quad 0\, &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 2 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 2 &{} \quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 2 \\ \end{array} } \right] \end{aligned}$$
(66)

Employing, \(\mathbf {M}\), \(\mathbf{C}\) is written as:

$$\begin{aligned} \begin{aligned} \mathbf{C}=\gamma \left\langle F \right\rangle ^{q} \left[ \frac{\sqrt{3}}{2 \bar{{\sigma }}} \mathbf{M} + \left( \frac{q \left[ \text {sign}(F) +1\right] }{2 \left\langle f \right\rangle }-\frac{\sqrt{3}}{3 \bar{{\sigma }}} \right) \mathbf{a} \otimes \mathbf{a}\right] \end{aligned} \end{aligned}$$
(67)

Using Eq. (63):

$$\begin{aligned} \mathbf{G} = \frac{\partial \dot{\varvec{\varepsilon }}^{vp}}{\partial \varvec{\varepsilon }^{vp} }=\frac{\gamma ~q}{2}\left\langle F \right\rangle ^{q-1}\left[ \text {sign}(F)+1\right] ~\frac{\partial F}{\partial \varvec{\varepsilon }^{vp}} \otimes \mathbf{a} \end{aligned}$$
(68)

Employing chain rule, we obtain:

$$\begin{aligned} \frac{\partial F}{\partial \varvec{\varepsilon }^{vp} }= & {} \frac{\partial f}{\partial \bar{\varepsilon }^{vp}}~\frac{\partial \bar{\varepsilon }^{vp}}{\partial \varvec{\varepsilon }^{vp}}~\frac{1}{{\sigma }_{y}} -\frac{f}{{\sigma _y}^{2}}~\frac{\partial \sigma _y}{\partial \bar{\varepsilon }^{vp}}~\frac{\partial \bar{\varepsilon }^{vp}}{\partial \varvec{\varepsilon }^{vp}}\nonumber \\= & {} -\frac{2}{3} B n (\bar{\varepsilon }^{vp})^{n-2} ~ \left( \frac{\sigma _y + f}{{\sigma _y}^2}\right) ~ {\varvec{\varepsilon }}^{vp} \end{aligned}$$
(69)

Therefore,

$$\begin{aligned} \begin{aligned} \mathbf{G}&= - [\text {sign}(F)+1] \left( \frac{\gamma ~q~B~n}{3}\right) \left\langle F \right\rangle ^{q-1}~ (\bar{\varepsilon }^{vp})^{n-2}\\&\quad \; \times \left( \frac{\sqrt{3} \bar{\sigma }}{{\sigma _y}^2}\right) {\varvec{\varepsilon }}^{vp} \otimes \mathbf{a} \end{aligned} \end{aligned}$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Oskay, C. Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problems. Comput Mech 55, 771–787 (2015). https://doi.org/10.1007/s00466-015-1135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1135-4

Keywords

Navigation