Skip to main content
Log in

Predicting band structure of 3D mechanical metamaterials with complex geometry via XFEM

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Band structure characterizes the most important property of mechanical metamaterials. However, predicting the band structure of 3D metamaterials with complex microstructures through direct numerical simulation (DNS) is computationally inefficient due to the complexity of meshing. To overcome this issue, an extended finite element method (XFEM)-based method is developed to predict 3D metamaterial band structures. Since the microstructure and material interface are implicitly resolved by the level-set function embedded in the XFEM formulation, a non-conforming (such as uniform) mesh is used in the proposed method to avoid the difficulties in meshing complex geometries. The accuracy and mesh convergence of the proposed method have been validated and verified by studying the band structure of a spherical particle embedded in a cube and comparing the results with DNS. The band structures of 3D metamaterials with different microstructures have been studied using the proposed method with the same finite element mesh, indicating the flexibility of this method. This XFEM-based method opens new opportunities in design and optimization of mechanical metamaterials with target functions, e.g. location and width of the band gap, by eliminating the iterative procedure of re-building and re-meshing microstructures that is required by classical DNS type of methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ambati M, Fang N, Sun C, Zhang X (2007) Surface resonant states and superlensing in acoustic metamaterials. Phys Rev B 75(19):195–447

    Article  Google Scholar 

  2. Axmann W, Kuchment P (1999) An efficient finite element method for computing spectra of photonic and acoustic band-gap materials: I. scalar case. J Comput Phys 150(2):468–481

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuška I, Banerjee U (2012) Stable generalized finite element method (sgfem). Comput Methods Appl Mech Eng 201:91–111

    Article  Google Scholar 

  4. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zhang H (2014) PETSc users manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory

  5. Belytschko T, Tabbara M (1993) H-adaptive finite element methods for dynamic problems, with emphasis on localization. Int J Numer Methods Eng 36(24):4245–4265

    Article  MATH  Google Scholar 

  6. Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  7. Biwa S, Yamamoto S, Kobayashi F, Ohno N (2004) Computational multiple scattering analysis for shear wave propagation in unidirectional composites. Int J Solids Struct 41(2):435–457

    Article  MATH  Google Scholar 

  8. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Natu Photonics 1(4):224–227

    Article  Google Scholar 

  9. Chen H, Chan C (2007) Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 91(18):183–518

    Google Scholar 

  10. Cheng KW, Fries TP (2010) Higher-order xfem for curved strong and weak discontinuities. Int J Numer Methods Eng 82(5):564–590

    MATH  MathSciNet  Google Scholar 

  11. Cottrell J, Reali A, Bazilevs Y, Hughes T (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195(41):5257–5296

    Article  MATH  MathSciNet  Google Scholar 

  12. Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  13. Ding Y, Liu Z, Qiu C, Shi J (2007) Metamaterial with simultaneously negative bulk modulus and mass density. Phys Rev Lett 99(9):093–904

    Article  Google Scholar 

  14. Dobson DC (1999) An efficient method for band structure calculations in 2d photonic crystals. J Comput Phys 149(2):363–376

    Article  MATH  Google Scholar 

  15. Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MATH  MathSciNet  Google Scholar 

  16. Eleftheriades GV, Balmain KG (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, New York

    Book  Google Scholar 

  17. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721):534–537

    Article  Google Scholar 

  18. Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nat Mater 5(6):452–456

    Article  Google Scholar 

  19. Fries TP (2008) A corrected xfem approximation without problems in blending elements. Int J Numer Methods Eng 75(5):503–532

    Article  MATH  MathSciNet  Google Scholar 

  20. Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solids 57(3):621–633

    Article  MATH  Google Scholar 

  21. Hernandez V, Roman JE, Vidal V (2014) SLEPc Web page. http://www.grycap.upv.es/slepc

  22. Huang H, Sun C, Huang G (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47(4):610–617

    Article  MathSciNet  Google Scholar 

  23. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  24. Hussein MI (2009) Reduced bloch mode expansion for periodic media band structure calculations. Proc R Soc A 465(2109):2825–2848

    Article  MATH  MathSciNet  Google Scholar 

  25. Jia Y, Anitescu C, Ghorashi SS, Rabczuk T (2014) Extended isogeometric analysis for material interface problems. IMA J Appl Math p. hxu004

  26. Jun S, Cho YS (2003) Deformation-induced bandgap tuning of 2d silicon-based photonic crystals. Opt Express 11(21):2769–2774

    Article  Google Scholar 

  27. Jun S, Cho YS, Im S (2003) Moving least-square method for the band-structure calculation of 2d photonic crystals. Opt Express 11(6):541–551

    Article  Google Scholar 

  28. Kittel C, McEuen P (1976) Introduction to solid state physics, vol 8. Wiley, New York

    Google Scholar 

  29. Kobayashi F, Biwa S, Ohno N (2004) Wave transmission characteristics in periodic media of finite length: multilayers and fiber arrays. Int J Solids Struct 41(26):7361–7375

    Article  MATH  Google Scholar 

  30. Lai Y, Wu Y, Sheng P, Zhang ZQ (2011) Hybrid elastic solids. Nat Mater 10(8):620–624

    Article  Google Scholar 

  31. Laude V, Wilm M, Benchabane S, Khelif A (2005) Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Phys Rev E 71(3):036–607

    Article  Google Scholar 

  32. Lee B, To A (2009) Enhanced absorption in one-dimensional phononic crystals with interfacial acoustic waves. Appl Phys Lett 95(3):031–911

    Google Scholar 

  33. Lee SH, Park CM, Seo YM, Wang ZG, Kim CK (2010) Composite acoustic medium with simultaneously negative density and modulus. Phys Rev Lett 104(5):054–301

    Article  Google Scholar 

  34. Li J, Chan C (2004) Double-negative acoustic metamaterial. Phys Rev E 70(5):055–602

    Google Scholar 

  35. Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (i) methodology and convergence. Comput Methods Appl Mech Eng 143(1):113–154

    Article  MATH  MathSciNet  Google Scholar 

  36. Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736

    Article  Google Scholar 

  37. Liu Z, Chan C, Sheng P (2002) Three-component elastic wave band-gap material. Phys Rev B 65(16):116–165

    Google Scholar 

  38. Liu Z, Chan C, Sheng P (2005) Analytic model of phononic crystals with local resonances. Phys Rev B 71(1):014–103

    Google Scholar 

  39. Martin A, Kadic M, Schittny R, Bückmann T, Wegener M (2012) Phonon band structures of three-dimensional pentamode metamaterials. Phys Rev B 86(15):116–155

    Article  Google Scholar 

  40. Matsuki T, Yamada T, Izui K, Nishiwaki S (2014) Topology optimization for locally resonant sonic materials. Appl Phys Lett 104(19):191–905

    Article  Google Scholar 

  41. Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P (2012) Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat Commun 3:756

    Article  Google Scholar 

  42. Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117(4):483–493

    Article  Google Scholar 

  43. Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28):3163–3177

    Article  MATH  Google Scholar 

  44. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966

    Article  Google Scholar 

  45. Qiu M, He S (2000) A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions. J Appl Phys 87(12):8268–8275

    Article  Google Scholar 

  46. Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2d and 3d. Int J Numer Methods Eng 63(11):1559–1582

    Article  MATH  MathSciNet  Google Scholar 

  47. Reissland J, Klemens PG (2008) The physics of phonons, vol 28. American Institute of Physics, College Park

    Google Scholar 

  48. Roman JE, Campos C, Romero E, Tomas A (2014) SLEPc users manual. Technical Report DSIC-II/24/02 - Revision 3.5, D. Sistemes Informàtics i Computació, Universitat Politècnica de València

  49. Romero E, Roman JE (2014) A parallel implementation of davidson methods for large-scale eigenvalue problems in slepc. ACM Trans Math Softw 40(2):13

    Article  MathSciNet  Google Scholar 

  50. Sainidou R, Stefanou N, Modinos A (2002) Formation of absolute frequency gaps in three-dimensional solid phononic crystals. Phys Rev B 66(21):212–301

    Article  Google Scholar 

  51. Setyawan W, Curtarolo S (2010) High-throughput electronic band structure calculations: challenges and tools. Comput Mater Sci 49(2):299–312

    Article  Google Scholar 

  52. Sigalas M, Garcıa N (2000) Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J Appl Phys 87(6):3122–3125

    Article  Google Scholar 

  53. Soukoulis CM (2001) Photonic crystals and light localization in the 21st century, vol 563. Springer, New York

    Book  Google Scholar 

  54. Sukumar N, Pask J (2009) Classical and enriched finite element formulations for bloch-periodic boundary conditions. Int J Numer Methods Eng 77(8):1121–1138

    Article  MATH  MathSciNet  Google Scholar 

  55. Tian R, To AC, Liu WK (2011) Conforming local meshfree method. Int J Numer Methods Eng 86(3):335–357

    Article  MATH  Google Scholar 

  56. Wang Y, Li F, Wang Y, Kishimoto K, Huang W (2009) Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice. Acta Mech Sin 25(1):65–71

    Article  MATH  MathSciNet  Google Scholar 

  57. Wang Y, Luo Z, Zhang N, Kang Z (2014) Topological shape optimization of microstructural metamaterials using a level set method. Comput Mater Sci 87:178–186

    Article  Google Scholar 

  58. Wu TT, Huang ZG, Lin S (2004) Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Phys Rev B 69(9):094–301

    Article  Google Scholar 

  59. Yablonovitch E, Gmitter T (1989) Photonic band structure: the face-centered-cubic case. Phys Rev Lett 63(18):1950

    Article  Google Scholar 

  60. Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321(5891):930–930

    Article  Google Scholar 

  61. Yao S, Zhou X, Hu G (2008) Experimental study on negative effective mass in a 1d mass-spring system. New J Phys 10(4):20–43

    Article  Google Scholar 

  62. Yuan R, Singh SS, Chawla N, Oswald J (2014) Efficient methods for implicit geometrical representation of complex material microstructures. Int J Numer Methods Eng 98(2):79–91

    Article  MathSciNet  Google Scholar 

  63. Zhang H, Smith B, Sternberg M, Zapol P (2007) Sips: shift-and-invert parallel spectral transformations. ACM Trans Math Softw 33(2):9

    Article  MathSciNet  Google Scholar 

  64. Zhang P, To AC (2013) Broadband wave filtering of bioinspired hierarchical phononic crystal. Appl Phys Lett 102(12):121–910

    Google Scholar 

  65. Zhao H, Liu Y, Wang G, Wen J, Yu D, Han X, Wen X (2005) Resonance modes and gap formation in a two-dimensional solid phononic crystal. Phys Rev B 72(1):012–301

  66. Zhou F, Bao Y, Cao W, Stuart CT, Gu J, Zhang W, Sun C (2011) Hiding a realistic object using a broadband terahertz invisibility cloak. Sci Rep 1:78

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Hong Zhang from Argonne National Laboratory for helpful discussions on how to use PETSc and SLEPc. We express thanks to Jacob Smith from Northwestern University for revising English for this paper. Y.L. warmly expresses thanks for the financial support provided by Ryan Fellowship and Royal E. Cabell Terminal Year Fellowship, as well as a supercomputing grant on Quest from Northwestern University High Performance Computing Center. W.K.L. expresses thanks for the support from AFOSR Grant No. FA9550-14-1-0032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing Kam Liu.

Appendices

Appendix 1: Reciprocal lattice and Brillouin zone

Suppose a periodic structure is characterized by a spatial translation vector \(\mathbf {T}\)

$$\begin{aligned} \mathbf {T} = n_i \mathbf {a}_i \end{aligned}$$
(25)

where \(n_i\) is an arbitrary integer and \(\mathbf {a}_i\) are primitive vectors as in Eq. 5. The reciprocal lattice is then defined as a set of vectors \(\mathbf {G}\) that satisfy

$$\begin{aligned} \exp (i \mathbf {G} \cdot \mathbf {T}) = 1 \end{aligned}$$
(26)

for all possible lattice position vectors \(\mathbf {T}\). Vector \(\mathbf {G}\) is also called a reciprocal vector.

For a three-dimensional problem, \(\mathbf {G}\) can be written as:

$$\begin{aligned} \mathbf {G} = p_i \mathbf {b}_i \end{aligned}$$
(27)

where \(p_i\) is an arbitrary integer and \(\mathbf {b}_i\) are primitive vectors in reciprocal space defined as

$$\begin{aligned} \mathbf {b}_1 = 2\pi \frac{\mathbf {a}_2 \times \mathbf {a}_2}{\mathbf {a}_1 \cdot (\mathbf {a}_2 \times \mathbf {a}_3)}\end{aligned}$$
(28)
$$\begin{aligned} \mathbf {b}_2 = 2\pi \frac{\mathbf {a}_3 \times \mathbf {a}_1}{\mathbf {a}_2 \cdot (\mathbf {a}_3 \times \mathbf {a}_1)}\end{aligned}$$
(29)
$$\begin{aligned} \mathbf {b}_3 = 2\pi \frac{\mathbf {a}_1 \times \mathbf {a}_2}{\mathbf {a}_3 \cdot (\mathbf {a}_2 \times \mathbf {a}_2)} \end{aligned}$$
(30)

Any vector that connects two points on the reciprocal lattice is a reciprocal vector. In plane wave propagation problems, Bloch wave vectors \(\mathbf {K}\) are in the reciprocal space.

Brillouin zone is the primitive cell in reciprocal space, analogous to the primitive cell in defining the spatial periodicity. For description of a Bloch wave in a periodic medium, the solutions for all the wave vectors in the reciprocal space can be completely characterized by the behavior in the single Brillouin zone. All Bloch wave vectors can be translated to the Brillouin zone by a reciprocal vector.

$$\begin{aligned} \mathbf {K} = \mathbf {K'} + \mathbf {G} \end{aligned}$$
(31)

where \(\mathbf {K'}\) is the wave vector in the Brillouin zone.

Due to the symmetries, the Brillouin zone can be further reduced to an irreducible zone. Figure 13 shows the irreducible Brillouin zone for SC, BCC and FCC crystals.

Fig. 13
figure 13

Original lattice structures and corresponding irreducible Brillouin zones in the reciprocal space for SC, BCC and FCC crystals. The figure is adapted from Ref. [51]

Appendix 2: Solver options for PETSc and SLEPc

The equation to be solved (as in Eq. 18) is a generalized eigenvalue problem with symmetric and definite matrices. A typical example of a generalized eigensolver is available through [21]. The runtime keywords that can be used directly with the example eigensolver are summarized as:

“-eps_type krylovschur -eps_target 10.0 -st_ksp_type minres -st_pc_type bjacobi -st_sub_pc_type icc -st_ksp_rtol 1.e-4 -eps_tol 1.e-4 -eps_nev 40 -st_type sinvert”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, Y. & Liu, W.K. Predicting band structure of 3D mechanical metamaterials with complex geometry via XFEM. Comput Mech 55, 659–672 (2015). https://doi.org/10.1007/s00466-015-1129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1129-2

Keywords

Navigation