Skip to main content
Log in

Numerical simulation of a flow-like landslide using the particle finite element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an actual landslide process that occurred in Southern China is simulated by a continuum approach, the particle finite element method (PFEM). The PFEM attempts to solve the boundary-value problems in the framework of solid mechanics, satisfying the governing equations including momentum conservation, displacement-strain relation, constitutive relation as well as the frictional contact between the sliding mass and the slip surface. To warrant the convergence behaviour of solutions, the problem is formulated as a mathematical programming problem, while the particle finite element procedure is employed to tackle the issues of mesh distortion and free-surface evolution. The whole procedure of the landslide, from initiation, sliding to deposition, is successfully reproduced by the continuum approach. It is shown that the density of the mass has little influence on the sliding process in the current landslide, whereas both the geometry and the roughness of the slip surface play important roles. Comparative studies are also conducted where a satisfactory agreement is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pudasaini SP, Hutter K (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 59:153–177

    Google Scholar 

  2. Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 59:153–177

    Google Scholar 

  3. Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanicsm, travel distance and velocity. In: Hungr O, Fell O, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 99–128

    Google Scholar 

  4. Richenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 305–324

    Chapter  Google Scholar 

  5. Staron L (2008) Mobility of long runout rock flows: a discrete numerical investigation. Geophys J Int 172(1):455–463

    Article  Google Scholar 

  6. Tang C, Hu J, Lin M, Angelier J, Lu C, Chan Y, Chu H (2009) The Tsaoling landslide triggered by the Chi–Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106:1–19

    Article  Google Scholar 

  7. Lo CM, Lin ML, Tang CL, Hu JC (2011) A kinematic model fo the hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng Geol 123:22–39

    Article  Google Scholar 

  8. Li WC, Li HJ, Dai FC, Lee LM (2012) Discrete element modeling of a rainfall-induced flowslide. Eng Geol 149–150:22–34

    Article  Google Scholar 

  9. Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3:523–538

    Article  Google Scholar 

  10. Crosta GB, Imposimato S, Roddeman DG, Chiesa S, Moia F (2005) Small fast moving flow-like landslides in volcanic deposits: the 2001 Las Colinas landslide (EI Salvador). Eng Geol 79(3–4):185–214

    Article  Google Scholar 

  11. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  12. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  13. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34

    Article  Google Scholar 

  14. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simulat 79:763–813

    Article  MathSciNet  MATH  Google Scholar 

  15. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  16. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  17. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1099

    Article  Google Scholar 

  18. Haddad B, Pastor M, Palacios D, Munoz-Salinas E (2010) A SPH depth integrated model for popocatepetl 2001 lahar (Mexico): sensitivity analysis and runout simulation. Eng Geol 114(3–4):312–329

    Article  Google Scholar 

  19. Huang Y, Zhang W, Xu Q, Xie P, Hao L (2012) Run-out analysis of flow-like landslides triggered by the Ms 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2):275–283

    Article  Google Scholar 

  20. Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2014) SPH run-out modelling of channelised landslides of the flow type. Geomorphology 214(1):502–513

    Article  Google Scholar 

  21. Huang Y, Dai Z (2014) Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method. Eng Geol 168:86–97

    Article  Google Scholar 

  22. Zhang X, Krabbenhoft K, Pedroso DM, Lyamin AV, Sheng D, Vicente da Silva M, Wang D (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142

    Article  Google Scholar 

  23. Onate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method. An overview. Int J Comput Methods 1:267–307

    Article  MATH  Google Scholar 

  24. Idelsohn SR, Onate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61:964–989

    Article  MATH  Google Scholar 

  25. Onate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197:1777–1800

    Article  MathSciNet  MATH  Google Scholar 

  26. Cremonesi M, Frangi A, Perego U (2010) A lagrangian finite element approach for the analysis of fluid-structure interaction problems. Int J Numer Methods Eng 84:610–630

    MathSciNet  MATH  Google Scholar 

  27. Onate E, Celigueta MA, Idelsohn SR, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48:307–318

    Article  MathSciNet  MATH  Google Scholar 

  28. Carbonell JM, Onate E, Suarez B (2013) Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method. Comput Mech 52:607–629

    Article  MATH  Google Scholar 

  29. Onate E, Celigueta MA, Latorre S, Casas G, Rossi R, Rojek J (2014) Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput Part Mech 1:85–102

    Article  Google Scholar 

  30. Zhang X, Krabbenhoft K, Sheng D (2014) Particle finite element analysis of the granular column collapse problem. Granul Matter 16(4):609–619

    Article  Google Scholar 

  31. Cante J, Davalos C, Hernandez JA, Oliver J, Jonsen P, Gustafsson G, Haggblad HA (2014) Pfem-based modeling of industrial granular flows. Comput Part Mech 1:47–70

    Article  Google Scholar 

  32. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  MathSciNet  MATH  Google Scholar 

  33. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  34. Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotech J 37(1):146–160

    Article  Google Scholar 

  35. Mangeney-Castelneau A, Vilotte JP, Bristeau MO, Perthame B, Bouchut F, Simeoni C, Yerneni S (2003) Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J Geophys Res Solid Earth 108(B11):2527

    Article  Google Scholar 

  36. Kuo CY, Tai YC, Chen CC, Chang KJ, Siau AY, Dong JJ, Han RH, Shimamoto T, Lee CT (2011) The landslide stage of the hsiaolin catastrophe: simulation and validation. J Geophys Res Earth Surf 116:F04007

    Google Scholar 

  37. Oliver J, Cante JC, Weyler R, Gonzalez C, Hernandez J (2007) Particle finite element methods in solid mechanics problems. In: Onate E, Owen DRJ (eds) Computational plasticity. Springer, Dordrecht, pp 87–103

    Chapter  Google Scholar 

  38. Edelsbrunner H, Mucke EP (1994) Three dimensional alpha shapes. ACM Trans Graph 13(1):43–72

    Article  MATH  Google Scholar 

  39. Hu Y, Randolph MF (1998) A practical numerical approach for large deformation problems in soil. Int J Numer Anal Methods Geomech 22:327–350

    Article  MATH  Google Scholar 

  40. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian mesh-free particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570

    Article  MATH  Google Scholar 

  41. Holsapple KA (2013) Modeling granular material flows: the angle of repose, fluidization and the cliff collapse problem. Planet Space Sci 82–83:11–26

    Article  Google Scholar 

  42. Chen W, Qiu T (2012) Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int J Geomech 11(2):127–135

    Article  Google Scholar 

  43. Krabbenhoft K, Lyamin AV, Sloan SW (2007) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44:1533–1549

    Article  Google Scholar 

  44. Krabbenhoft K, Damkilde L (2003) A general nonlinear optimization algorithm for lower bound limit analysis. Int J Numer Methods Eng 56:165–184

    Article  MATH  Google Scholar 

  45. Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior-point method for elastoplasticity. Int J Numer Methods Eng 69:592–626

    Article  MathSciNet  MATH  Google Scholar 

  46. Krabbenhoft K, Karim MR, Lyamin AV, Sloan SW (2012) Associated computational plasticity schemes for nonassociated frictional materials. Int J Numer Methods Eng 89:1089–1117

    Article  MathSciNet  Google Scholar 

  47. Krabbenhoft K, Lyamin AV (2012) Computational cam clay plasticity using second-order cone programming. Comput Methods Appl Mech Eng 209–212:239–249

    Article  MathSciNet  Google Scholar 

  48. Krabbenhoft K, Lyamin AV, Huang J, Vicente da Silva M (2012) Granular contact dynamics using mathematical programming methods. Comput Geotech 43:165–176

    Article  Google Scholar 

  49. Huang J, Vicente da Silva M, Krabbenhoft Kristian (2013) Three-dimensional granular contact dynamics with rolling resistance. Comput Geotech 49:289–298

    Article  Google Scholar 

  50. Krabbenhoft K, Huang J, Vicente da Silva M, Lyamin AV (2012) Granular contact dynamics with particle elasticiy. Granul Matter 14:607–619

    Article  Google Scholar 

  51. Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program 95:249–277

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhao CH, Dai FC (2007) Study on failure mechanism of a fill slope in shenzhen. Chin J Geol Hazard Control 18(2):1–8 In Chinese

    Google Scholar 

  53. Lajeunesse E, Mangeney-Castelneau A, Vilotte JP (2004) Spreading of a granular mass on an horizontal plane. Phys Fluids 16:2371–2381

  54. Goujon C, Thomas N, Dalloz-Dubrujeaud B (2003) Monodisperse dry granular flows on inclined planes: role of roughness. Eur Phys J E Soft Matter 11(2):147–157

    Article  Google Scholar 

  55. Lagree PY, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a \(\mu (i)\)-rheology. J Fluid Mech 686:378–408

    Article  MathSciNet  MATH  Google Scholar 

  56. Lube G, Huppert HE, Sparks RSJ, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508:175–199

    Article  MATH  Google Scholar 

  57. Lube G, Huppert HE, Sparks RSJ, Freundt A (2005) Collapses of two-dimensional granular columns. Phys Rev E 72:041301

    Article  Google Scholar 

  58. Lajeunesse E, Monnier JB, Homsy GM (2005) Granular slumping on a horizontal surface. Phys Fluids 17:103302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Krabbenhoft, K., Sheng, D. et al. Numerical simulation of a flow-like landslide using the particle finite element method. Comput Mech 55, 167–177 (2015). https://doi.org/10.1007/s00466-014-1088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1088-z

Keywords

Navigation