Skip to main content
Log in

A reproducing kernel smooth contact formulation for metal forming simulations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a meshfree smooth contact formulation for application to metal forming problems. The continuum-based contact formulation requires \(\text {C}^{2}\) continuity in the approximation of contact surface geometry and displacement variables, which is difficult for the conventional \(\text {C}^{0}\) finite elements. In this work, we introduce a reproducing kernel approximation to achieve arbitrary degree of smoothness for contact surface representation and displacement field approximation. This approach allows the employment of continuum-based contact formulation, leading to a continuous contact force vector and a consistent tangent particularly advantageous in the Newton iteration of contact analysis. The proposed meshfree smooth contact formulation has been applied to the simulation of metal forming processes and is shown to improve the convergence significantly in comparison with the finite element-based \(\text {C}^{0}\) contact formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Wriggers P (2006) Computational contact mechanics. Wiley, Chichester

    Book  MATH  Google Scholar 

  2. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  3. Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact methods for large deformations. Comput Method Appl M 193:4891–4913

    Article  MATH  MathSciNet  Google Scholar 

  4. Hesch C, Betsch P (2011) Transient 3d contact problems—NTS method: mixed methods and conserving integration. Comput Mech 48:437–449

    Article  MATH  MathSciNet  Google Scholar 

  5. Hughes TJR, Taylor RC, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Method Appl M 8:249–276

    Article  MATH  Google Scholar 

  6. Hallquist JO, Goudreau GL, Benson DJ (1985) Sliding interfaces with contact-impact in large-scale lagrangian computations. Comput Method Appl M 51:107–137

    Article  MATH  MathSciNet  Google Scholar 

  7. Simo JC, Wriggers P, Taylor RL (1985) A perturbed lagrangian formulation for the finite element solution of contact problems. Comput Method Appl M 50:163–180

    Article  MATH  MathSciNet  Google Scholar 

  8. Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Method Appl M 94:373–389

    Article  MATH  Google Scholar 

  9. Wang SP, Nakamachi E (1999) The inside-outside contact search algorithm for finite element analysis. Int J Numer Method Eng 40:3665–3685

    Article  MathSciNet  Google Scholar 

  10. Bittencourt E, Creus GJ (1998) Finite element analysis of three-dimensional contact and impact in large deformation problems. Comput Struct 69:219–234

    Article  MATH  Google Scholar 

  11. Eterovic AL, Bathe KJ (1991) An interface interpolation scheme for quadratic convergence in the finite element analysis of contact problems. In: Wriggers P, Wagner W (eds) Nonlinear computational mechanics—state of the art. Springer, Berlin, pp 703–715

    Google Scholar 

  12. Wriggers P, Imhof M (1993) On the treatment of nonlinear unilateral contact problems. Arch Appl Mech 63:116–129

    Article  MATH  Google Scholar 

  13. Heegaard JH, Curnier A (1996) Geometric properties of 2D and 3D unilateral large slip contact operators. Comput Method Appl M 131:263–286

    Article  MATH  MathSciNet  Google Scholar 

  14. Puso MA, Laursen TA (2002) A 3D contact smoothing method using Gregory patches. Int J Numer Method Eng 54:1161–1194

    Article  MATH  MathSciNet  Google Scholar 

  15. Krstulovic-Opara L, Wriggers P, Korelc J (2002) Q \(\text{ C }^{1}\)-continuouos formulation for 3D finite deformation with friction. Comput Mech 29:27–42

    Article  MATH  MathSciNet  Google Scholar 

  16. Belytschko T, Neal MO (1991) Contact-impact by the pinball algorithm with penalty and lagrangian methods. Int J Numer Method Eng 31:547–572

    Article  MATH  Google Scholar 

  17. Rebelo N, Nagtegaal JC, Hibbitt HD (1990) Finite element analysis of sheet forming processes. Int J Numer Method Eng 30:1739–1758

    Article  Google Scholar 

  18. Wriggers P, Krstulovic-Opara L, Korelc J (2001) Smooth \(\text{ C }^{1}\)-interpolations for two-dimensional frictional contact problems. Int J Numer Method Eng 51:1469–1495

    Article  MATH  MathSciNet  Google Scholar 

  19. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    Article  MATH  MathSciNet  Google Scholar 

  20. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Method Appl M 139:289–314

    Article  MATH  MathSciNet  Google Scholar 

  21. Babuska I, Melenk JM (1997) The partition of unity method. Int J Numer Method Eng 40:727–758

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Method Fl 20:1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng State Art Rev 3(1):3–80

    Article  MathSciNet  Google Scholar 

  24. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Method Appl M 139(1–4):195–227

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen JS, Pan C, Roque C, Wang HP (1998) A lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22(3):289–307

    Article  MATH  Google Scholar 

  26. Chen JS, Wu CT, Pan C (1998) Application of reproducing kernel particle method to large deformation and contact analysis of elastomers. Rubber Chem Technol 71(2):191–213

    Article  Google Scholar 

  27. Chen JS, Yoon S, Liu WK (2000) An improved reproducing kernel particle method for nearly incompressible finite elasticity. Comput Method Appl M 181(1–3):117–145

    Article  MATH  Google Scholar 

  28. Chen JS, Wang HP (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Method Appl M 187(3–4):441–468

    Article  MATH  Google Scholar 

  29. Wang HP, Wu CT, Guo Y, Botkin ME (2009) A coupled meshfree/finite element method for automotive crashworthiness simulations. Int J Impact Eng 36:1210–1222

    Article  Google Scholar 

  30. Chen JS, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Method Appl M Eng 193:2827–2844

    Article  MATH  Google Scholar 

  31. Chen JS, Hu W, Hu HY (2008) Reproducing kernel enhanced local radial basis collocation method. Int J Numer Method Eng 75:600–627

    Article  MATH  Google Scholar 

  32. Wu CT, Park CK, Chen JS (2011) A generalized approximation for the meshfree analysis of solids. Int J Numer Method Eng 85:693–722

    Article  MATH  Google Scholar 

  33. Wu CT, Guo Y, Askari E (2013) Numerical modeling of composite solids using an immersed meshfree Galerkin method. Composites B 45:1397–1413

    Article  Google Scholar 

  34. Wu CT, Hu W (2013) Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments. Interact Multiscale Mech 6(2):83–105

    Article  Google Scholar 

  35. Laursen TA, Simo JC (1993) A continuum-based finite element formulation for implicit solution of multibody, large deformation frictional contact problems. Int J Numer Method Eng 36:3451–3485

    Article  MATH  MathSciNet  Google Scholar 

  36. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Method Eng 37:229–256

    Google Scholar 

  37. Belytschko T, Krongauz Y, Fleming M, Organ D, Liu WK (1996) Smoothing and accelerated computations in the element free Galerkin method. J Comput Appl Math 74(1–2):111–126

    Google Scholar 

  38. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Method Appl Mech Eng 139(1–4):3–47

    Article  MATH  Google Scholar 

  39. Belytschko T, Krysl P, Krongauz Y (1997) A three-dimensional explicit element-free Galerkin methods. Int J Numer Method Fl 24(12):1253–1270

    Article  MATH  Google Scholar 

  40. Belytschko T, Krongauz Y, Dolbow J, Cerlach C (1998) On the completeness of Meshfree particle methods. Int J Numer Method Eng 43(5):785–819

    Article  MATH  Google Scholar 

  41. Liu WK, Hao W, Chen Y, Jun S, Gosz J (1997) Multiresolution reproducing kernel particle methods. Comput Mech 20(4):295–309

    Article  MATH  MathSciNet  Google Scholar 

  42. Liu WK, Jun S, Sihling DT, Chen Y, Hao W (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Method Fl 24:1391–1415

    Article  MATH  MathSciNet  Google Scholar 

  43. Liu WK, Jun S (1998) Multiple-scale reproducing kernel particle methods for large deformation problems. Int J Numer Method Eng 41(7):1339–1362

    Article  MATH  MathSciNet  Google Scholar 

  44. Liu WK, Hao S, Belytschko T, Li S, Chang CT (1999) Multiple scale Meshfree methods for damage fracture and localization. Comput Mater Sci 16(1–4):197–205

    Article  Google Scholar 

  45. Zhong Z (1993) Finite element procedures for contact-impact problems. Oxford Science Publications, Oxford

    Google Scholar 

  46. Taylor L, Cao J, Karafillis AP, Boyce MC (1995) Numerical simulations of sheet metal forming. J Mater Process Technol 50:168–179

    Article  Google Scholar 

  47. Han W, Meng X (2001) Error analysis of reproducing kernel particle method. Comput Method Appl Mech Eng 190:6157–6181

    Article  MATH  MathSciNet  Google Scholar 

  48. You Y, Chen JS, Lu H (2003) Filter, reproducing kernel, and adaptive Meshfree methods. Comput Mech 31:316–326

    MATH  Google Scholar 

  49. Guan C, Chi SW, Chen JS, Slawson TR, Roth MJ (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38:1033–1047

    Article  Google Scholar 

  50. Chen JS, Kotta V, Lu H, Wang D, Moldovan D, Wolf D (2004) A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials. Comput Method Appl M Eng 193:1277–1303

    Article  MATH  MathSciNet  Google Scholar 

  51. Chen JS, Mehraeen S (2004) Variationally consistent multi-scale modeling and homogenization of stressed grain growth. Comput Method Appl M Eng 193:1825–1848

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiun-Shyan Chen.

Additional information

Contribution for the Special Issues on Modeling and Simulation of Advanced Manufacturing Processes-T. I. Zohdi, Handling Editor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HP., Wu, CT. & Chen, JS. A reproducing kernel smooth contact formulation for metal forming simulations. Comput Mech 54, 151–169 (2014). https://doi.org/10.1007/s00466-014-1015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1015-3

Keywords

Navigation