Skip to main content
Log in

XFEM with equivalent eigenstrain for matrix–inclusion interfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Several engineering applications rely on particulate composite materials, and numerical modelling of the matrix–inclusion interface is therefore a crucial part of the design process. The focus of this work is on an original use of the equivalent eigenstrain concept in the development of a simplified eXtended Finite Element Method. Key points are: the replacement of the matrix-inclusion interface by a coating layer with small but finite thickness, and its simulation as an inclusion with an equivalent eigenstrain. For vanishing thickness, the model is consistent with a spring-like interface model. The problem of a spherical inclusion within a cylinder is solved. The results show that the proposed approach is effective and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abbas S, Alizada A, Fries T (2010) The xfem for high-gradient solutions in convection-dominated problems. Int J Num Methods Eng 82:1044–1072

    Article  MATH  MathSciNet  Google Scholar 

  2. Belytschko T, Gracie R, Ventura G (2009) A review of the extended/generalized finite element methods for material modelling. Model Simul Mater Sci Eng 17. doi:10.1088/0965-0393/17/4/043001

  3. Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element method for solids defined by implicit surfaces. Int J Num Methods Eng 56:609–635

    Article  MATH  Google Scholar 

  4. Benveniste Y (1985) The effective mechanical behavior of composite materials with imperfect contact between the constituents. Mech Mater 4:197–208

    Article  Google Scholar 

  5. Benveniste Y, Miloh T (2001) The effective mechanical behavior of composite materials with imperfect contact between the constituents. Mech Mater 33:309–323

    Article  Google Scholar 

  6. Benvenuti E (2008) A regularized xfem framework for embedded cohesive interfaces. Comput Methods Appl Mech Eng 197:4367–4378

    Article  MATH  Google Scholar 

  7. Benvenuti E (2011) Mesh-size-objective xfem for regularized continuousdiscontinuous transition. Finite Elem Anal Des 47:1326–1336

    Article  Google Scholar 

  8. Benvenuti E, Tralli A (2012) Simulation of finite-width process zone for concrete-like materials. Comput Mech 50:479–497

    Article  MATH  Google Scholar 

  9. Benvenuti E, Tralli A, Ventura G (2008) A regularized xfem framework for embedded cohesive interfaces. Int J Num Methods Eng 197:4367–4378

    MATH  MathSciNet  Google Scholar 

  10. Benvenuti E, Ventura G, Ponara N (2012) Finite element quadrature of regularized discontinuous and singular level set functions in 3D problems. Algorithms 5:529–544

    Article  MathSciNet  Google Scholar 

  11. Benvenuti E, Ventura G, Ponara N, Tralli A (2013) Variationally consistent extended fe model for 3d planar and curved imperfect interfaces. Comput Methods Appl Mech Eng 267:434–457

    Google Scholar 

  12. Benvenuti E, Vitarelli O, Tralli A (2012) Delamination of frp-reinforced concrete by means of an extended finite element formulation. Compos Part B Eng 43:3258–3269

    Article  Google Scholar 

  13. Bigoni D, Serkov S, Movchan A, Valentini M (1998) Asymptotic models of dilute composites with imperfectly bonded inclusions. Int J Solids Struct 35:3239–3258

    Article  MATH  MathSciNet  Google Scholar 

  14. Blal N, Daridon L, Monerie Y, Pagano S (2012) Artificial compliance inherent to the intrinsic cohesive zone models: criteria and application to planar meshes. Int J Fract 178:71–83

    Article  Google Scholar 

  15. Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Num Methods Eng 57:1015–1038

    Article  MATH  Google Scholar 

  16. Colonetti G (1921) Per una teoria generale delle coazioni elastiche. Atti R Acad Sci Torino Cl Sci Fis Mat Nat 56:188–198

    Google Scholar 

  17. Cools R, Haegemans A (2003) Algorithm 824: cubpack: a package for automatic cubature; framework description. ACM Trans Math Softw 29:287–296

    Article  MATH  Google Scholar 

  18. Duarte C, Babuska I, Oden J (2000) Generalized finite element methods for three- dimensional structural mechanics problems. Comput Struct 77:215–232

    Article  MathSciNet  Google Scholar 

  19. Dvorak G (2013) Micromechanics of composite materials. Solid mechanics and its applications, vol 186. Springer, New York

    Book  Google Scholar 

  20. Eshelby J (1951) The force on elastic singularity. Philos Trans R Soc Lond A Math Phys Sci 244:87–112

    Article  MATH  MathSciNet  Google Scholar 

  21. Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A Math Phys Eng Sci 241:376–396

    Article  MATH  MathSciNet  Google Scholar 

  22. Farsad M, Vernerey F, Park H (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Num Methods Eng 84:1466–1489

    Article  MATH  MathSciNet  Google Scholar 

  23. Fries T (2007) A corrected xfem approximation without problems in blending elements. Int J Num Methods Eng 75:503–532

    Article  MathSciNet  Google Scholar 

  24. Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Num Methods Eng 84:253–304

    MATH  MathSciNet  Google Scholar 

  25. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulatepolymer composites. Compos Part B Eng 39:933–961

    Article  Google Scholar 

  26. Furuhashi R, Mura T (1979) On the equivalent inclusion method and impotent eigenstrains. J Elast 9:263–270

    Article  Google Scholar 

  27. Giner E, Sukumar N, Tarancon J, Fuenmayor F (2009) An abaqus implementation of the extended finite element method. Eng Fract Mech 76:347–368

    Article  Google Scholar 

  28. Gurtin M (1995) The nature of configurational forces. Arch Ration Mech Anal 131:67–100

    Article  MATH  MathSciNet  Google Scholar 

  29. Hashin Z (1990) Thermoelastic properties of fiber composites with imperfect interface. Mech Mater 8:333–348

    Article  Google Scholar 

  30. Hashin Z (1992) Extremum principles for elastic heterogenous media with imperfect interfaces and their application to bounding of effective moduli. J Mech Phys Solids 40:767– 781

    Article  MATH  MathSciNet  Google Scholar 

  31. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 12:213–222

    Article  Google Scholar 

  32. Horibe T, Tsuchida E, Arai Y, Tanai K (2012) Stress analysis of a cicular cylinder with a spherical inclusion under tension. J Solid Mech Mater Eng 6:860–870

    Google Scholar 

  33. Iarve E, Gurvich M, Mollenhauer D, Rose C, Dávila C (2011) Mesh-independent matrix cracking and delamination modeling in laminated composites. Int J Num Methods Eng 88:749–773

    Article  MATH  Google Scholar 

  34. Klarbring A (1991) Derivation of a model of adhesively bonded joints by the asymptotic expansion method. Int J Eng Sci 29:493–512

    Article  MATH  MathSciNet  Google Scholar 

  35. Lian W, Legrain G, Cartraud P (2013) Image-based computational homogenization and localization: comparison between x-fem/levelset and voxel-based approaches. Comput Mech 51:279–293

    Article  MATH  MathSciNet  Google Scholar 

  36. Luo JC, Gao CF (2011) Stress field of a coated arbitrary shape inclusion. Meccanica 46:1055–1071

    Article  MATH  MathSciNet  Google Scholar 

  37. Maugin G (1993) Material inhomogeneities in elasticity. Chapman & Hall, London

  38. Maugin G (2013) Sixty years of configurational mechanics (19502010). Mech Res Commun 50:39–49

    Article  Google Scholar 

  39. Melenk J, Babuska I (1996) The partition of unity finite element method: Basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  MATH  MathSciNet  Google Scholar 

  40. Moës N, Cloirec M, Cartraud P, Remacle J (2003) A computational approach to handle complex microsctructures geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  MATH  Google Scholar 

  41. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Num Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  42. Mollenhauer D, Ward L, Iarve E, Putthanarat S, Hoos K, Hallett S, Li X (2012) Simulation of discrete damage in composite overheight compact tension specimens. Comput Part A Appl Sci Manuf 43:1667–1679

    Article  Google Scholar 

  43. Mousavi S, Pask J, Sukumar N (2012) Efficient adaptive integration of functions with sharp gradients and cusps in n-dimensional parallelepipeds. Int J Num Methods Eng 91:343–357

    Article  MATH  Google Scholar 

  44. Mura T (1982) Micromechanics of defects in solids. Martinus Nijhoff, The Hague, The Netherlands

  45. Mura T, Furuhashi R (1984) The elastic inclusion with a sliding interface. J Appl Mech 51:308–310

    Article  MATH  Google Scholar 

  46. Muskhelishvili N (1975) Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending. Noordhoff Int Pub XXXI

  47. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531

    Article  MATH  Google Scholar 

  48. Nyashin Y, Lokhov V, Ziegler F (2005) Decomposition method inlinear elastic problems with eigenstrain. ZAMM Z Angew Mathods Mech 85:557–570

    MATH  MathSciNet  Google Scholar 

  49. Reissner H (1931) Eigenspannungen und eigenspannungsquellen. Zeit Angew Mathods Mech 11:1–8

    Article  Google Scholar 

  50. Segurado J, LLorca J (2004) A new three-dimensional interface finite element to simulate fracture in composites. Int J Solids Struct 41:2977–2993

    Article  MATH  Google Scholar 

  51. Suganuma K, Okamoto T, Koizljmi M, Shimada M (1984) Effect of interlayers in ceramic-metal joints with thermal expansion mismatches. J Am Ceram Soc 67:256–257

    Article  Google Scholar 

  52. Sukumar N, Chopp D, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200

    Article  MATH  Google Scholar 

  53. Sukumar N, Huang Z, Prevost J, Suo Z (2004) Partition of unity enrichment for bimaterial interface cracks. Int J Num Methods Eng 59:1075–1102

    Article  MATH  Google Scholar 

  54. Suquet P (1988) Discontinuities and plasticity. Springer, New York

    Google Scholar 

  55. Tomar V, Zhai J, Zhou M (2004) Bounds for element size in a variable stiffnesss cohesive finite element model. Int J Num Methods Eng 61:1894–1920

    Article  MATH  Google Scholar 

  56. Tornberg A (2002) Multi-dimensional quadrature of singular and discontinuous functions. BIT Num Mathods 42:644–669

    Article  MATH  MathSciNet  Google Scholar 

  57. Turon A, Dàvila CG, Camanho P, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74:1665–1682

    Article  Google Scholar 

  58. Vandoren B, Proft KD, Simone A, Sluys L (2013) Mesoscopic modelling of masonry using weak and strong discontinuities. Comput Methods Appl Mech Eng 255:167–182

    Article  Google Scholar 

  59. Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Num Methods Eng 66:761–795

    Article  MATH  MathSciNet  Google Scholar 

  60. Ventura G (2011) A new method for the representation and evolution of three dimensional discontinuity surfaces in xfem/gfem. AIMETA, Bologna. pp 1–10. ISBN 978-88-906340-1-7 (online)

  61. Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in the extended finite element method. Int J Num Methods Eng 77:1–29

    Article  MATH  MathSciNet  Google Scholar 

  62. Vörös G, Pukánszky B (2001) Effect of a soft interlayer with changing properties on the stress distribution around inclusions and yielding of composites. Compos Part A Appl Sci Manuf 32:343–352

    Google Scholar 

  63. Yvonnet J, Quang HL, He QC (2008) An xfem/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput Mech 42:119–131

    Article  MATH  MathSciNet  Google Scholar 

  64. Zahedi S, Tornberg A (2010) Delta function approximations in level set methods by distance function extension. J Comput Phys 229:2199–2219

    Article  MATH  MathSciNet  Google Scholar 

  65. Zhong Z, Meguid S (1997) On the elastic field of a spherical inhomogeneity with an imperfectly bonded interface. J Elast 46:91–113

    Article  MATH  MathSciNet  Google Scholar 

  66. Zhu Q-Z, Gu S, Yvonnet J, Shao J, He Q (2011) Three-dimensional numerical modelling by xfem of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials. Int J Num Methods Eng 88:307–328

    Article  MATH  MathSciNet  Google Scholar 

  67. Zohdi T (2005) An introduction to computational micromechanics. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

This work was financed by the Italian PRIN Fund 2009XWLFKW Multi-scale modelling of materials and structures. The numerical tests were run by N. Ponara by using the X3D code [60] enhanced with the proposed approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Benvenuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benvenuti, E. XFEM with equivalent eigenstrain for matrix–inclusion interfaces. Comput Mech 53, 893–908 (2014). https://doi.org/10.1007/s00466-013-0938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0938-4

Keywords

Navigation