Skip to main content
Log in

On numerical modeling of animal swimming and flight

  • Review Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Aquatic and aerial animals have developed their superior and complete mechanisms of swimming and flight. These mechanisms bring excellent locomotion performances to natural creatures, including high efficiency, long endurance ability, high maneuverability and low noise, and can potentially provide inspiration for the design of the man-made vehicles. As an efficient research approach, numerical modeling becomes more and more important in studying the mechanisms of swimming and flight. This review is focused on assessing the recent progress in numerical techniques of solving animal swimming and flight problems. According to the complexity of the problems considered, numerical studies are classified into five stages, of which the main characteristics and the numerical strategies are described and discussed. In addition, the body-conformal mesh, Cartesian-mesh, overset-grid, and meshfree methods are briefly introduced. Finally, several open issues in numerical modeling in this field are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lighthill MJ (1969) Hydromechanics of aquatic animal propulsion. Annu Rev Fluid Mech 1:413–446

    Article  Google Scholar 

  2. Videler JJ (1993) Fish swimming. Chapman and Hall, London

    Book  Google Scholar 

  3. Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fish swimming. Annu Rev Fluid Mech 32:33–53

    Article  MathSciNet  Google Scholar 

  4. Wu TY (2001) On theoretical modeling of aquatic and aerial animal locomotion. Adv Appl Mech 38:291–353

    Article  Google Scholar 

  5. Videler JJ (2005) Avian flight. Oxford University Press, Oxford

    Google Scholar 

  6. Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210

    Article  Google Scholar 

  7. Fish FE, Lauder GV (2006) Passive and active flow control by swimming fishes and mammals. Annu Rev Fluid Mech 38: 193–224

    Google Scholar 

  8. Shyy W, Lian Y, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynolds number flyers. Cambridge University Press, New York

    Google Scholar 

  9. Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping wing aerodynamics: progress and challenges. AIAA J 46: 2136–2149

    Google Scholar 

  10. Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327

    Article  Google Scholar 

  11. Tytell ED, Borazjani I, Sotiropoulos F, Baker TV, Anderson EJ, Lauder GV (2010) Disentangling the functional roles of morphology and motion in the swimming of fish. Integr Comput Biol 50:1140–1154

    Article  Google Scholar 

  12. Wu TY (2011) Fish swimming and bird/insect flight. Annu Rev Fluid Mech 43:25–58

    Article  Google Scholar 

  13. Hertel H (1966) Structure, form, movement. Reinhold, New York

    Google Scholar 

  14. Ellington CP (1984) The aerodynamics of hovering insect flight. II. Morphological parameters. Philos Trans R Soc Lond B 305: 17–40

    Google Scholar 

  15. Ellington CP (1984) The aerodynamics of hovering insect flight. III. Kinematics. Philos Trans R Soc Lond B 305:41–78

    Article  Google Scholar 

  16. Foreman MB, Eaton RC (1993) The direction change concept for reticulospinal control of goldfish escape. J Neurosci 13: 4101–4113

    Google Scholar 

  17. Jayne BC, Lauder GV (1993) Red and white muscle activity and kinematics of the escape response of the bluegill sunfish during swimming. J Comput Physiol A 173:495–508

    Google Scholar 

  18. Dickinson MH, Lighton JRB (1995) Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268:87–90

    Article  Google Scholar 

  19. Wootton RJ (1999) Invertebrate paraxial locomotory appendages: design, deformation and control. J Exp Biol 202:3333–3345

    Google Scholar 

  20. Dickinson MH, Lighton JRB (2000) How animals move: an integrative view. Science 288:100–106

    Article  Google Scholar 

  21. Tytell ED, Lauder GV (2002) The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. J Exp Biol 205:2591–2603

    Google Scholar 

  22. Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B 358:1577–1587

    Article  Google Scholar 

  23. Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208

    Article  Google Scholar 

  24. Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science 200:495–498

    Article  Google Scholar 

  25. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) Fish exploiting vortices decrease muscle activity. Science 302: 1566–1569

    Google Scholar 

  26. Lauder GV, Madden PGA (2008) Dissecting insect flight. Annu Rev Physiol 70:143–163

    Article  Google Scholar 

  27. Iosilevskii G, Joel DM (2013) Aerodynamic trapping effect and its implications for capture of flying insects by carnivorous pitcher plants. Eur J Mech B 38:65–72

    Article  Google Scholar 

  28. Lighthill MJ (1975) Biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  29. Childress S (1981) Mechanics of swimming and flying. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  30. Alexander RM (1993) Principles of animal locomotion. Princeton University Press, Princeton

    Google Scholar 

  31. Vogel S (1994) Life in moving fluids, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  32. Romanenko EV (2002) Fish and dolphin swimming. Pensoft, Sofia

    Google Scholar 

  33. Helfman GS, Collette BB, Facey DF, Bowen BW (2009) The diversity of fishes: biology, evolution and ecology, 2nd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  34. Ellington CP, van den Berg C, Willmott A, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630

    Article  Google Scholar 

  35. Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960

    Article  Google Scholar 

  36. Birch JM, Dickinson MH (2002) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412: 729–733

    Google Scholar 

  37. Prempraneerach P, Hover FS, Triantafyllou MS. The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In: Proceedings of the 13th international symposium on unmanned untethered submersible technology

  38. Triantafyllou MS, Techet AH, Hover FS (2004) Review of experimental work in biomimetic foils. IEEE J Ocean Eng 29:585–594

    Article  Google Scholar 

  39. Taylor G (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond A 209:447–461

    Article  MATH  Google Scholar 

  40. Taylor G (1952) The action of waving cylindrical tails in propelling microscopic organisms. Proc R Soc Lond A 211:225–239

    Article  MATH  Google Scholar 

  41. Taylor G (1952) Analysis of the swimming of long and narrow animals. Proc R Soc Lond A 214:158–183

    Article  MATH  Google Scholar 

  42. Lighthill MJ (1960) Note on the swimming of slender fish. J Fluid Mech 9:305–317

    Article  MathSciNet  Google Scholar 

  43. Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44:265–301

    Article  MATH  Google Scholar 

  44. Jones RT (1946) Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound. NACA rep 835

  45. Lighthill MJ (1971) Large-amplitude elongated-body theory of fish locomotion. Proc R Soc Lond B 179:125–138

    Article  Google Scholar 

  46. Wu TY (1971) Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. J Fluid Mech 46:545–568

    Article  Google Scholar 

  47. Lighthill MJ, Blake R (1990) Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1. Biological background, and analysis by elongated-body theory. J Fluid Mech 212:183–207

    Article  MathSciNet  Google Scholar 

  48. Candelier F, Boyer F, Leroyer A (2011) Three-dimensional extension of Lighthill’s large-amplitude elongated-body theory of fish locomotion. J Fluid Mech 674:196–226

    Article  MathSciNet  MATH  Google Scholar 

  49. Wu TY (1961) Swimming of a waving plate. J Fluid Mech 10: 321–344

    Google Scholar 

  50. Cheng JY, Zhuang LX, Tong BG (1991) Analysis of swimming three-dimensional waving plates. J Fluid Mech 232:341–355

    Article  MathSciNet  MATH  Google Scholar 

  51. Lighthill MJ (1973) On the Weis-Fogh mechanism of lift generation. J Fluid Mech 60:1–17

    Article  MATH  Google Scholar 

  52. Edwards RH, Cheng HK (1981) The separation vortex in the Weis-Fogh circulation-generation mechanism. J Fluid Mech 120: 463–473

    Google Scholar 

  53. Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230

    Google Scholar 

  54. Ellington CP (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos Trans R Soc Lond B 305:1–15

    Article  Google Scholar 

  55. Van Eysden CA, Sader JE (2006) Small amplitude oscillations of a flexible thin blade in a viscous fluid: exact analytical solution. Phys Fluids 18:123102

    Article  Google Scholar 

  56. Felderhof BU (2006) The swimming of animalcules. Phys Fluids 18:063101

    Article  MathSciNet  Google Scholar 

  57. Azuma A (2006) The biokinetics of flying and swimming, 2nd edn. AIAA, Virginia

    Google Scholar 

  58. Childress S, Dudley R (2004) Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in \(\text{ Re }_{\omega }\). J Fluid Mech 498:257–288

    Article  MathSciNet  MATH  Google Scholar 

  59. Wu JZ, Ma HY, Zhou MD (2006) Vorticity and vortex dynamics. Springer, Berlin

    Book  Google Scholar 

  60. Lighthill MJ (1952) On sound generated aerodynamically. I. General theory. Proc R Soc Lond A 211:564–587

    Article  MathSciNet  MATH  Google Scholar 

  61. Tian FB, Lu XY, Luo H (2012) Propulsive performance of a body with a traveling wave surface. Phys Rev E 86:016304

    Article  Google Scholar 

  62. Seo JH, Moon YJ (2006) Linearized perturbed compressible equations for low Mach number aeroacoustics. J Comput Phys 218:702–719

    Article  MathSciNet  MATH  Google Scholar 

  63. Bae Y, Moon YJ (2008) Aerodynamic sound generation of flapping wing. J Acoust Soc Am 124:72–81

    Article  Google Scholar 

  64. Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230:7347–7363

    Article  MathSciNet  MATH  Google Scholar 

  65. Liu H, Wassersug R, Kawachi K (1996) A computational fluid dynamics study of tadpole swimming. J Exp Biol 199:1245–1260

    Google Scholar 

  66. Alben S, Shelley M (2005) Coherent locomotion as an attracting state for a free flapping body. Proc Natl Acad Sci USA 102: 11163–11166

    Google Scholar 

  67. Lu XY, Liao Q (2006) Dynamic responses of a two-dimensional flapping foil motion. Phys Fluids 18:098104

    Article  Google Scholar 

  68. Yang Y, Wu GH, Yu YL, Tong BG (2008) Two-dimensional self-propelled fish motion in medium: an integrated method for deforming body dynamics and unsteady fluid dynamics. Chin Phys Lett 25:597

    Article  Google Scholar 

  69. Zhang J, Liu NS, Lu XY (2010) Locomotion of a passively flapping flat plate. J Fluid Mech 659:43–68

    Article  MathSciNet  MATH  Google Scholar 

  70. Spagnolie SE, Moret L, Shelley M, Zhang J (2010) Surprising behaviors in flapping locomotion with passive pitching. Phys Fluids 22:041903

    Article  Google Scholar 

  71. Liu G, Yu YL, Tong BG (2011) Flow control by means of a traveling curvature wave in fishlike escape responses. Phys Rev E 84:056312

    Article  Google Scholar 

  72. Zhang X, Ni S, Wang S, He G (2009) Effects of geometric shape on the hydrodynamics of a self-propelled flapping foil. Phys Fluids 21:103302

    Article  Google Scholar 

  73. Yin B, Luo H (2010) Effect of wing inertia on hovering performance of flexible flapping wings. Phys Fluids 22:111902

    Article  Google Scholar 

  74. Tian FB, Luo H, Song J, Lu XY (2013) Force production and asymmetric deformation of a flexible flapping wing in forward flight. J Fluids Struct 36:149–161

    Article  Google Scholar 

  75. Huang WX, Sung HJ (2010) Three-dimensional simulation of a flapping flag in a uniform flow. J Fluid Mech 653:301–336

    Article  MathSciNet  MATH  Google Scholar 

  76. Qi D, Liu Y, Shyy W, Aono H (2010) Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number. Phys Fluids 22:091901

    Article  Google Scholar 

  77. Kang CK, Aono H, Cesnik CES, Shyy W (2011) Effects of flexibility on the aerodynamic performance of flapping wings. J Fluid Mech 689:32–74

    Article  MATH  Google Scholar 

  78. Tian FB, Lu XY, Luo H (2012) Onset of instability of a flag in uniform flow. Theor Appl Mech Lett 2:022005

    Article  Google Scholar 

  79. Dai H, Luo H, Doyle JF (2012) Dynamic pitching of an elastic rectangular wing in hovering motion. J Fluid Mech 693:473–499

    Article  MATH  Google Scholar 

  80. Nakata T, Liu H (2012) A fluid–structure interaction model of insect flight with flexible wings. J Comput Phys 231:1822–1847

    Article  MathSciNet  MATH  Google Scholar 

  81. Nakata T, Liu H (2011) Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc R Soc B 279:722–731

    Article  Google Scholar 

  82. Song F, Lee KL, Soh AK, Zhu F, Bai YL (2004) Experimental studies of the material properties of the forewing of cicada (Homóptera, Cicàdidae). J Exp Biol 207:3035–3042

    Article  Google Scholar 

  83. Lauder GV, Tytell ED (2005) Hydrodynamics of undulatory propulsion. In: Shadwick RE, Lauder GV (eds) Fish biomechanics, vol 23. Academic Press, San Diego, pp 425–468

    Chapter  Google Scholar 

  84. Bao L, Hu JS, Yu YL, Cheng P, Xu BQ, Tong BG (2006) Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Appl Math Mech 27:741–748

    Article  MATH  Google Scholar 

  85. Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3:299–306

    Article  Google Scholar 

  86. Doyle JF (ed) (2009) Guided explorations of the mechanics of solids and structures. Cambridge University Press, New York

    Google Scholar 

  87. Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (under review) Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J Comput Phys

  88. Tian FB, Dai H, Luo H, Doyle JF, Rousseau B (2013) Computational fluid–structure interaction for biological and biomedical flows. In: Proceedings of the ASME 2013 fluids engineering division summer meeting . Incline Village, Nevada, p 16408

  89. Tian FB, Chang S, Luo H, Rousseau B (2013) A 3D numerical simulation of wave propagation on the vocal fold surface. In: Proceedings of the 10th international conference on advances in quantitative laryngology, voice and speech research, Cincinnati, OH, p 94921483

  90. Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, von Loebbecke A (2008) A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J Comput Phys 227:4825–4852

    Article  MathSciNet  MATH  Google Scholar 

  91. Luo H, Mittal R, Zheng X, Bielamowicz S, Walsh R, Hahn J (2008) An immersed-boundary method for flow–structure interaction in biological systems with application to phonation. J Comput Phys 227:9303–9332

    Article  MathSciNet  MATH  Google Scholar 

  92. Tian FB, Luo H, Zhu L, Liao JC, Lu XY (2011) An immersed boundary-lattice Boltzmann method for elastic boundaries with mass. J Comput Phys 230:7266–7283

    Article  MathSciNet  MATH  Google Scholar 

  93. Luo H, Dai H, Ferreira de Sousa P, Bo Y (2012) On numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76

    Article  MathSciNet  Google Scholar 

  94. Gustafson K, Leben R (1991) Computation of dragonfly aerodynamics. Comput Phys Commun 65:121–132

    Article  MathSciNet  MATH  Google Scholar 

  95. Mittal S, Tezduyar T (1992) A finite element study of incompressible flows past oscillating cylinders and airfoils. Int J Numer Methods Fluids 15:1073–1118

    Article  Google Scholar 

  96. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows–fluid–structure interactions. Int J Numer Methods Fluids 21:933–953

    Article  MATH  Google Scholar 

  97. Gustafson K (1996) Biological dynamical subsystems of hovering flight. Math Comput Simulat 40:397–410

    Article  Google Scholar 

  98. Liu H, Ellington CP, Kawachi K, van den Berg C, Willmott AP (1998) A computational fluid dynamics study of hawkmoth hovering. J Exp Biol 206:461–477

    Google Scholar 

  99. Liu H, Kawachi K (1998) A numerical study of insect flight. J Comput Phys 146:124–156

    Google Scholar 

  100. Wang ZJ (2000) Two dimensional mechanism for insect hovering. Phys Rev Lett 85:2216–2219

    Article  Google Scholar 

  101. Wang ZJ (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341

    Article  MATH  Google Scholar 

  102. Ramamurti R, Sandberg WC, Löhner R, Walker JA, Westneat MW (2002) Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation. J Exp Biol 205:2997–3008

    Google Scholar 

  103. Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518

    Google Scholar 

  104. Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70

    Google Scholar 

  105. Lu XY, Yang JM, Yin XZ (2003) Propulsive performance and vortex shedding of a foil in flapping flight. Acta Mech 165: 189–206

    Google Scholar 

  106. Sun M, Wu JH (2003) Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J Exp Biol 206:3065–3083

    Article  Google Scholar 

  107. Young J, Lai JCS (2004) Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA J 42:2042–2052

    Article  Google Scholar 

  108. Guglielmini L, Blondeaux P (2004) Propulsive efficiency of oscillating foils. Eur J Mech B 23:255–278

    Article  MATH  Google Scholar 

  109. Wang ZJ, Birch JM, Dickinson MH (2004) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. J Exp Biol 207: 449–460

    Google Scholar 

  110. Blondeaux P, Fornarelli F, Guglielmini L, Triantafyllou MS, Verzicco R (2005) Numerical experiments on flapping foils mimicking fish-like locomotion. Phys Fluids 17:113601

    Article  Google Scholar 

  111. Sengupta TK, Vikas V, Johri A (2005) An improved method for calculating flow past flapping and hovering airfoils. Theor Comput Fluid Dyn 19:417–440

    Article  MATH  Google Scholar 

  112. Dong H, Mittal R, Najjar FM (2006) Wake topology and hydrodynamic performance of low aspect-ratio flapping foils. J Fluid Mech 556:309–343

    Article  MathSciNet  Google Scholar 

  113. Ramamurti R, Sandberg WC (2007) A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. J Exp Biol 210:881–896

    Article  Google Scholar 

  114. Young J, Lai JCS (2007) Vortex lock-in phenomenon in the wake of a plunging airfoil. AIAA J 45:485–490

    Article  Google Scholar 

  115. Young J, Lai JCS (2007) Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J 45:1695–1702

    Article  Google Scholar 

  116. Young J, Lai JCS (2007) On the aerodynamic forces of a plunging airfoil. J Mech Sci Technol 21:1388–1397

    Article  Google Scholar 

  117. Young J, Lai JCS, Germain C (2008) Simulation and parameter variation of flapping-wing motion based on dragonfly hovering. AIAA J 46:918–924

    Article  Google Scholar 

  118. Zhu Q, Peng Z (2009) Mode coupling and flow energy harvesting by a flapping foil. Phys Fluids 21:033601

    Article  Google Scholar 

  119. Zhu Q, Haase M, Wu CH (2009) Modeling the capacity of a novel flow-energy harvester. Appl Math Model 33:2207–2217

    Article  MathSciNet  MATH  Google Scholar 

  120. Guglielmini L, Blondeaux P (2009) Numerical experiments on the transient motions of a flapping foil. Eur J Mech B 28: 136–145

    Google Scholar 

  121. Zhu Q (2011) Optimal frequency for flow energy harvesting of a flapping foil. J Fluid Mech 675:495–517

    Article  MATH  Google Scholar 

  122. Sarkar S, Chajjed S, Krishnan A (2013) Study of asymmetric hovering in flapping flight. Eur J Mech B 37:72–89

    Article  MathSciNet  Google Scholar 

  123. Wang YX, Lu XY, Zhuang LX, Tang ZM, Hu WR (2004) Numerical simulation of drop Marangoni migration under microgravity. Acta Astronaut 54:325–335

    Google Scholar 

  124. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  MathSciNet  Google Scholar 

  125. Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472

    Article  MathSciNet  Google Scholar 

  126. Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion. Ph.D. thesis, Yeshiva University

  127. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252

    Article  MathSciNet  MATH  Google Scholar 

  128. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    MathSciNet  MATH  Google Scholar 

  129. Mittal R, Iaccarino G (2005) Immersed boundary method. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  Google Scholar 

  130. Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14:227–253

    Article  MATH  Google Scholar 

  131. Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43:91–101

    Article  MATH  Google Scholar 

  132. Sahin M, Mohseni K (2009) An arbitrary Lagrangian–Eulerian formulation for the numerical simulation of flow patterns generated by the hydromedusa Aequorea victoria. J Comput Phys 228:4588–4605

    Article  MathSciNet  MATH  Google Scholar 

  133. Kajtar JB, Monaghan JJ (2008) SPH simulations of swimming linked bodies. J Comput Phys 227:8568–8587

    Article  MathSciNet  MATH  Google Scholar 

  134. Kajtar JB, Monaghan JJ (2012) On the swimming of fish like bodies near free and fixed boundaries. Eur J Mech B 33:1–13

    Article  MathSciNet  MATH  Google Scholar 

  135. Hunt JCR, Wray A, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research, Report CTR-S88

  136. Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425:707–711

    Article  Google Scholar 

  137. Liao Q, Dong GJ, Lu XY (2004) Vortex formation and force characteristics of a foil in the wake of a circular cylinder. J Fluids Struct 19:491–510

    Article  Google Scholar 

  138. Borazjani I, Sotiropoulos F (2008) Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J Exp Biol 211:1541–1558

    Article  Google Scholar 

  139. Borazjani I, Sotiropoulos F (2009) Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J Exp Biol 212:576–592

    Article  Google Scholar 

  140. Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J Exp Biol 213:89–107

    Article  Google Scholar 

  141. Guerrero JE (2010) Wake signature and Strouhal number dependence of finite-span flapping wings. J Bionic Eng 7:S109–S122

    Article  MathSciNet  Google Scholar 

  142. Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R (1991) Wake mechanics for thrust generation in oscillating foils. Phys Fluids A 3:2835–2837

    Article  Google Scholar 

  143. Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluids Struct 7:205–224

    Article  Google Scholar 

  144. Tian FB (2011) Numerical investigation of bio-inspired flow–structure interaction. Ph.D. thesis, University of Science and Technology of China (in Chinese)

  145. Blake RW (ed) (1983) Fish locomotion. Cambridge University Press, Cambridge

    Google Scholar 

  146. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interface. Comput Methods Appl Mech Eng 119:73–94

    Article  MATH  Google Scholar 

  147. Combes SA, Daniel TL (2001) Shape, flapping and flexion: wing and fin design for forward flight. J Exp Biol 204:2073–2085

    Google Scholar 

  148. Zhu Q, Wolfgang M, Yue DKP, Triantafyllou MS (2002) Three-dimensional flow structures and vorticity control in fish-like swimming. J Fluid Mech 468:1–28

    MathSciNet  MATH  Google Scholar 

  149. Combes SA, Daniel TL (2003) Flexural stiffness in insect wings I. Scaling and the influence of wing venation. J Exp Biol 206: 2979–2987

    Google Scholar 

  150. Combes SA, Daniel TL (2003) Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J Exp Biol 206:2989–2997

    Article  Google Scholar 

  151. Combes SA, Daniel TL (2003) Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J Exp Biol 206:2999–3006

    Article  Google Scholar 

  152. Dong GJ, Lu XY (2007) Characteristics of flow over traveling-wavy foils in a side-by-side arrangement. Phys Fluids 19: 057107

    Article  Google Scholar 

  153. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50: 743–760

    Google Scholar 

  154. Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50: 761–778

    Google Scholar 

  155. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids. Published online. doi:10.1016/j.compfluid.2012.11.008

  156. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903

    Article  Google Scholar 

  157. Liu H, Wassersug R, Kawachi K (1997) The three-dimensional hydrodynamics of tadpole locomotion. J Exp Biol 200:2807–2819

    Google Scholar 

  158. Liu H, Kawachi K (1999) A numerical study of undulatory swimming. J Comput Phys 155:223–247

    Article  MATH  Google Scholar 

  159. Shu C, Liu N, Chew Y, Lu Z (2007) Numerical simulation of fish motion by using lattice Boltzmann-immersed boundary velocity correction method. J Mech Sci Technol 21:1139–1149

    Article  Google Scholar 

  160. Shirgaonkar AA, MacIver MA, Patankar NA (2009) A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. J Comput Phys 228:2366–2390

    Article  MathSciNet  MATH  Google Scholar 

  161. Noor DZ, Chern MJ, Horng TL (2009) An immersed boundary method to solve fluid–solid interaction problems. Comput Mech 44:447–453

    Article  MATH  Google Scholar 

  162. Kajtar JB, Monaghan JJ (2010) On the dynamics of swimming linked bodies. Eur J Mech B 29:377–386

    Article  MathSciNet  MATH  Google Scholar 

  163. Wang SY, Tian FB, Jia LB, Lu XY, Yin XZ (2010) The secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number. Phys Rev E 81:036305

    Article  Google Scholar 

  164. Du G, Sun M (2010) Effects of wing deformation on aerodynamic forces in hovering hoverflies. J Exp Biol 213:2273–2283

    Article  Google Scholar 

  165. Wang S, Zhang X (2011) An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J Comput Phys 230: 3479–3499

    Google Scholar 

  166. Ashraf MA, Young J, Lai JCS (2011) Reynolds number, thickness and camber effects on flapping airfoil propulsion. J Fluids Struct 27:145–160

    Article  Google Scholar 

  167. Bergmann M, Iollo A (2011) Modeling and simulation of fish-like swimming. J Comput Phys 230:329–348

    Article  MathSciNet  MATH  Google Scholar 

  168. Xu YQ, Tian FB, Deng YL (2013) An efficient red blood cell model in the frame of IB-LBM and its application. Int J Biomath 6:1250061

    Article  MathSciNet  Google Scholar 

  169. Tian FB, Luo H, Zhu L, Lu XY (2010) Interaction between a flexible filament and a downstream rigid body. Phys Rev E 82:026301

    Article  Google Scholar 

  170. Tian FB, Luo H, Lu XY (2011) Coupling modes of three filaments in side-by-side arrangement. Phys Fluids 23:111903

    Article  Google Scholar 

  171. Xu YQ, Tian FB, Li HJ, Deng YL (2012) Red blood cell partitioning and blood flux redistribution in microvascular bifurcation. Theor Appl Mech Lett 2:024001

    Article  Google Scholar 

  172. Xu YQ, Tang XY, Tian FB, Peng YH, Xu Y, Zeng YJ (2013) IB-LBM simulation of the haemocyte dynamics in a stenotic capillary. Comput Methods Biomech. Published online. doi:10.1080/10255842.2012.729581

  173. Dong GJ, Lu XY (2005) Numerical analysis on the propulsive performance and vortex shedding of fish-like travelling wavy plate. Int J Numer Methods Fluids 48:1351–1373

    Article  MATH  Google Scholar 

  174. Wu JZ, Pan ZL, Lu XY (2005) Unsteady fluid-dynamic force solely in terms of control-surface integral. Phys Fluids 17:098102

    Article  Google Scholar 

  175. Wootton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37:113–140

    Article  Google Scholar 

  176. Biewener AA, Dial KP (1995) In vivo strain in the humerus of pigeons (Columba livia) during flight. J Morphol 225:61–75

    Article  Google Scholar 

  177. Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45:2448–2457

    Article  Google Scholar 

  178. Zhu Q, Shoele K (2008) Propulsion performance of a skeleton-strengthened fin. J Exp Biol 211:2087–2100

    Article  Google Scholar 

  179. Ishihara D, Horie T, Denda M (2009) A two-dimensional computational study on the fluid–structure interaction cause of wing pitch changes in dipteran flapping flight. J Exp Biol 212:1–11

    Article  Google Scholar 

  180. Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B (2009) Influence of flexibility on the aerodynamic performance of a hovering wing. J Exp Biol 212:95–105

    Article  Google Scholar 

  181. Bozkurttas M, Mittal R, Dong H, Lauder GV, Madden P (2009) Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. J Fluid Mech 631:311–342

    Article  MATH  Google Scholar 

  182. Shoele K, Zhu Q (2013) Performance of a wing with nonuniform flexibility in hovering flight. Phys Fluids 25:041901

    Article  Google Scholar 

  183. Zhu L, Peskin CS (2002) Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J Comput Phys 179:452–468

    Google Scholar 

  184. Shoele K, Zhu Q (2010) Flow-induced vibrations of a deformable ring. J Fluid Mech 650:343–362

    Article  MathSciNet  MATH  Google Scholar 

  185. Wu CJ, Wang L (2010) Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school. Acta Mech Sin 26:25–45

    Google Scholar 

  186. Shelley M, Zhang J (2011) Flapping and bending bodies interacting with fluid flows. Annu Rev Fluid Mech 43:449–465

    Article  MathSciNet  Google Scholar 

  187. Zhu L, Peskin CS (2003) Interaction of two flapping filaments in a flowing soap film. Phys Fluids 15:1954–1960

    Google Scholar 

  188. Zhu L (2009) Interaction of two tandem deformable bodies in a viscous incompressible flow. J Fluid Mech 635:455–475

    Article  MathSciNet  MATH  Google Scholar 

  189. Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Phys Fluids 19:053103

    Article  Google Scholar 

  190. Heys JJ, Gedeon T, Knott BC, Kim Y (2008) Modeling arthropod filiform hair motion using the penalty immersed boundary method. J Biomech 41:977–984

    Article  Google Scholar 

  191. Huang WX, Chang CB, Sung HJ (2011) An improved penalty immersed boundary method for fluid–flexible body interaction. J Comput Phys 230:5061–5079

    Google Scholar 

  192. Mittal R, Zheng X, Bhardwaj R, Seo JH, Xue Q, Bielamowicz S (2011) Toward a simulation-based tool for the treatment of vocal fold paralysis. Front Physiol 2:19

    Google Scholar 

  193. Bhardwaj R, Mittal R (2012) Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation. AIAA J 50:1638–1642

    Article  Google Scholar 

  194. Hou G, Wang J, Layton A (2012) Numerical methods for fluid–structure interaction—a review. Commun Comput Phys 12: 337–377

    Google Scholar 

  195. Luo H, Dai H, Ferreira de Sousa P, Yin B (2012) On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76

    Article  MathSciNet  Google Scholar 

  196. LeVeque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31:1019–1044

    Article  MathSciNet  MATH  Google Scholar 

  197. Xu S, Wang ZJ (2006) An immersed interface method for simulating the interaction of a fluid with moving boundaries. J Comput Phys 216:454–493

    Article  MathSciNet  MATH  Google Scholar 

  198. Xu S (2011) A boundary condition capturing immersed interface method for 3D rigid objects in a flow. J Comput Phys 230: 7176–7190

    Google Scholar 

  199. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    Article  MathSciNet  MATH  Google Scholar 

  200. Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comput Methods Appl Mech Eng 112:253–282

    Google Scholar 

  201. Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177

    Article  MATH  Google Scholar 

  202. Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351–373

    Article  MathSciNet  MATH  Google Scholar 

  203. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397–412

    Article  MATH  Google Scholar 

  204. Johnson AA, Tezduyar TE (1997) 3D simulation of fluid–particle interactions with the number of particles reaching 100. Comput Methods Appl Mech Eng 145:301–321

    Article  MATH  Google Scholar 

  205. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143

    Google Scholar 

  206. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332

    Article  MATH  Google Scholar 

  207. Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190:373–386

    Article  MATH  Google Scholar 

  208. Johnson A, Tezduyar T (2001) Methods for 3D computation of fluid–object interactions in spatially-periodic flows. Comput Methods Appl Mech Eng 190:3201–3221

    Article  MATH  Google Scholar 

  209. Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191:673–687

    Article  MATH  Google Scholar 

  210. Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726

    Article  MATH  Google Scholar 

  211. Stein K, Tezduyar T, Benney R (2003) Computational methods for modeling parachute systems. Comput Sci Eng 5:39–46

    Article  Google Scholar 

  212. Dunne T, Rannacher R (2006) Adaptive finite element approximation of fluid–structure interaction based on an Eulerian variational formulation. In: Bungartz HJ, Schäfer M (eds) Fluid–structure interaction: modelling, simulation, optimisation. Springer, Berlin, pp 110–145

    Chapter  Google Scholar 

  213. Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. In: Bungartz HJ, Schäfer M (eds) Fluid–structure interaction: modelling, simulation, optimisation. Springer, Berlin, pp 371–385

    Chapter  Google Scholar 

  214. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  215. Connell BSH, Yue DKP (2007) Flapping dynamics of a flag in a uniform stream. J Fluid Mech 581:33–67

    Article  MathSciNet  MATH  Google Scholar 

  216. Peng Z, Zhu Q (2009) Energy harvesting through flow-induced oscillations of a foil. Phys Fluids 21:123602

    Article  Google Scholar 

  217. Young J, Ashraf MA, Lai JCS (in press) Numerical simulation of fully passive flapping foil. AIAA J

  218. Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408:835–839

    Article  Google Scholar 

  219. Müller UK (2003) Fish ’n flag. Science 302:1511–1512

    Article  Google Scholar 

  220. Shelley M, Vandenberghe N, Zhang J (2005) Heavy flags undergo spontaneous oscillations in flowing water. Phys Rev Lett 94:094302

    Article  Google Scholar 

  221. Hao J, Zhu L (2010) A lattice Boltzmann based implicit immersed boundary method for fluid–structure interaction. Comput Math Appl 59:185–193

    Article  MathSciNet  MATH  Google Scholar 

  222. Zhu L, He G, Wang S, Miller L, Zhang X, You Q, Fang S (2011) An immersed boundary method by the lattice Boltzmann approach in three dimensions with application. Comput Math Appl 61: 3506–3518

    Google Scholar 

  223. Standen EM, Lauder GV (2005) Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. J Exp Biol 208: 2753–2763

    Google Scholar 

  224. Cheng P, Hu J, Zhang G, Hou L, Xu B, Wu X (2007) Deformation measurements of dragonfly’s wings in free flight by using Windowed Fourier Transform. Opt Lasers Eng 46: 157–161

    Google Scholar 

  225. Hedrick TL (2008) Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspiration Biomimetics 3:034001

    Article  Google Scholar 

  226. Liu H, Aono H (2009) Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspiration Biomimetics 4:1–13

    MATH  Google Scholar 

  227. Dong H, Koehler C, Liang Z, Wan H, Gaston Z. An integrated analysis of a dragonfly in free flight. AIAA paper 2010-4390

  228. Luo H, Dai H, Mohd Adam Das SS, Song J, Doyle JF. Toward high-fidelity modeling of the fluid–structure interaction for insect wings. AIAA paper 2012-1212

  229. Hedrick TL, Tobalske BW, Ros IG, Warrick DR, Biewener AA (2012) Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio. Proc R Soc B 279:1986–1992

    Article  Google Scholar 

  230. Koehler C, Liang Z, Gaston Z, Wan H, Dong H (2012) 3D reconstruction and analysis of wing deformation in free-flying dragonflies. J Exp Biol 215:3018–3027

    Article  Google Scholar 

  231. Zheng L, Hedrick TL, Mittal R (2013) Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS One 8:e53060

    Article  Google Scholar 

  232. Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325: 1549–1552

    Google Scholar 

  233. Tobing S, Young J, Lai JCS (2010) Effects of aeroelasticity on flapping wing propulsion. In: 17th Australasian fluid mechanics conference, Auckland, New Zealand

  234. Drucker EG, Lauder GV (2001) Wake dynamics and fluid forces of turning maneuvers in sunfish. J Exp Biol 204:431–442

    Google Scholar 

  235. Drucker EG, Lauder GV (2005) Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. J Exp Biol 208:4479–4494

    Article  Google Scholar 

  236. Akhtar I, Mittal R, Lauder GV, Drucker E (2007) Hydrodynamic of biologically inspired tandem flapping foil configuration. Theor Comput Fluid Dyn 21:155–170

    Article  MATH  Google Scholar 

  237. Wang XX, Wu ZN (2012) Lift force reduction due to body image of vortex for a hovering flight model. J Fluid Mech 709: 648–658

    Google Scholar 

  238. Wang S, Zhang X, He G (2012) Numerical simulation of a three-dimensional fish-like body swimming with finlets. Commun Comput Phys 11:1323–1333

    MathSciNet  Google Scholar 

  239. Vargas A, Mittal R, Dong H (2008) A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspiration Biomimetics 3:026004

    Article  Google Scholar 

  240. Oeffner J, Lauder GV (2012) The hydrodynamic function of shark skin and two biomimetic applications. J Exp Biol 215:785–795

    Article  Google Scholar 

  241. Hermansson J, Hansbo P (2003) A variable diffusion method for mesh smoothing. Commun Numer Methods Eng 19:897–908

    Article  MathSciNet  MATH  Google Scholar 

  242. van Wassenbergh S, Strother JA, Flammang BE, Ferry-Graham LA, Aerts P (2008) Extremely fast prey capture in pipefish is powered by elastic recoil. J R Soc Interface 5:285–296

    Article  Google Scholar 

  243. Tytell ED, Hsu CY, Williams TL, Cohen AH, Fauci LJ (2010) Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc Natl Acad Sci USA 107:19832–19837

    Article  Google Scholar 

  244. Qian QJ, Sun DJ (2011) Numerical method for optimum motion of undulatory swimming plate in fluid flow. Appl Math Mech Engl Ed 32:339–348

    Article  MathSciNet  MATH  Google Scholar 

  245. Eloy C, Schouveiler L (2011) Optimisation of two-dimensional undulatory swimming at high Reynolds number. Int J Nonlinear Mech 46:568–576

    Article  Google Scholar 

  246. Eloy C (2012) Optimal Strouhal number for swimming animals. J Fluids Struct 30:205–218

    Article  Google Scholar 

  247. Gazzola M, van Rees WM, Koumoutsakos P (2012) C-start: optimal start of larval fish. J Fluid Mech 698:5–18

    Article  MathSciNet  MATH  Google Scholar 

  248. van Rees WM, Gazzola M, Koumoutsakos P (2013) Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J Fluid Mech 722:R3

    Article  Google Scholar 

  249. McMillen T, Williams T, Holmes P (2008) Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuromechanical phase lags in anguilliform swimmers. PLoS Comput Biol 4:e1000157

    Article  MathSciNet  Google Scholar 

  250. Cendes ZJ, Shenton D, Shahnasser H. Adaptive finite element mesh generation using the Delaunay algorithm. Department of Electrical and Computer Engineering, Carnegie Institute of Technology paper 102

  251. Baker T. Three-dimensional mesh generation by triangulation of arbitrary point sets. AIAA paper 87-1124

  252. George PL, Borouchaki H (1998) Delaunay triangulation and meshing: application to finite elements. Hermès Science, Paris

    MATH  Google Scholar 

  253. Löhner R, Parikh P (1988) Three-dimensional grid generation by the advancing-front method. Int J Numer Methods Fluids 8: 1135–1149

    Google Scholar 

  254. Mavriplis D (1995) An advancing front Delaunay triangulation algorithm designed for robustness. J Comput Phys 17:90–101

    Article  MathSciNet  Google Scholar 

  255. Marcum DL (2001) Efficient generation of high-quality unstructured surface and volume grids. Eng Comput 17:211–233

    Article  MATH  Google Scholar 

  256. Thompson JF, Warsi ZA, Mastin CW (1985) Numerical grid generation: foundations and applications. North-Holland, New York

    MATH  Google Scholar 

  257. Thompson JF, Soni BK, Weatherill NP (1998) Handbook of grid generation. CRC Press, Boca Raton

    Google Scholar 

  258. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite element computation of 3D flows. Computer 26: 27–36

    Google Scholar 

  259. Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174:261–274

    Article  MATH  Google Scholar 

  260. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130

    Article  MATH  Google Scholar 

  261. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189–3200

    Article  MATH  Google Scholar 

  262. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70:58–63

    Article  MATH  Google Scholar 

  263. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032

    Article  MATH  Google Scholar 

  264. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    Article  MathSciNet  MATH  Google Scholar 

  265. Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338

    Article  MathSciNet  MATH  Google Scholar 

  266. Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340

    Article  MATH  Google Scholar 

  267. Landau LD, Lifshitz EM (1986) Theory of elasticity. Pergamon, New York

    Google Scholar 

  268. Tang T (2005) Moving mesh methods for computational fluid dynamics. Contemp Math 383:141–173

    Article  Google Scholar 

  269. Di Y, Li R, Tang T, Zhang P (2005) Moving mesh finite element methods for the incompressible Navier–Stokes equations. SIAM J Sci Comput 26:1036–1056

    Article  MathSciNet  MATH  Google Scholar 

  270. Zhang Z (2006) Moving mesh method with conservative interpolation based on \(L^{2}\)-projection. Commun Comput Phys 1:930–944

    MATH  Google Scholar 

  271. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353–371

    Article  MathSciNet  MATH  Google Scholar 

  272. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351

    Article  MathSciNet  MATH  Google Scholar 

  273. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575

    Article  MathSciNet  MATH  Google Scholar 

  274. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753

    Article  MathSciNet  MATH  Google Scholar 

  275. Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng 195: 2983–3000

    Article  MathSciNet  MATH  Google Scholar 

  276. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206

    Article  MathSciNet  MATH  Google Scholar 

  277. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267

    Article  MathSciNet  MATH  Google Scholar 

  278. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp 02):1230001

    Article  MathSciNet  Google Scholar 

  279. Bazilevs Y, Takizawa K, Tezduyar TE (2012) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221

    Article  MathSciNet  Google Scholar 

  280. Chen D, Norris D, Ventikos Y (2009) The active and passive ciliary motion in the embryo node: a computational fluid dynamics model. J Biomech 42:210–216

    Article  Google Scholar 

  281. Chen D, Norris D, Ventikos Y (2011) Ciliary behaviour and mechano-transduction in the embryonic node: computational testing of hypotheses. Med Eng Phys 33:857–867

    Article  Google Scholar 

  282. Stein E, de Borst R, Hughes TJR (2004) Encyclopedia of computational mechanics: fundamentals, vol 1. Wiley, Chichester

    Book  Google Scholar 

  283. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54:901–922

    Article  MathSciNet  MATH  Google Scholar 

  284. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89

    Google Scholar 

  285. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29

    Article  MathSciNet  MATH  Google Scholar 

  286. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41

    Article  MathSciNet  MATH  Google Scholar 

  287. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52

    Google Scholar 

  288. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377–384

    Google Scholar 

  289. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225

    Article  MathSciNet  Google Scholar 

  290. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech. Published online. doi:10.1007/s00466-012-0790-y

  291. Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686

    Article  MathSciNet  MATH  Google Scholar 

  292. Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908

    Article  Google Scholar 

  293. Kalro V, Aliabadi S, Garrard W, Tezduyar T, Mittal S, Stein K (1997) Parallel finite element simulation of large ram-air parachutes. Int J Numer Methods Fluids 24:1353–1369

    Article  MATH  Google Scholar 

  294. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49

    Article  MATH  Google Scholar 

  295. Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142

    Article  MATH  Google Scholar 

  296. Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345–364

    Article  MATH  Google Scholar 

  297. Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854

    Article  MATH  Google Scholar 

  298. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169

    Article  MathSciNet  Google Scholar 

  299. Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79:010907

    Article  Google Scholar 

  300. Kim Y, Lai MC (2010) Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method. J Comput Phys 229:4840–4853

    Article  MathSciNet  MATH  Google Scholar 

  301. Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202:20–51

    Article  MATH  Google Scholar 

  302. Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105:354–366

    Article  MATH  Google Scholar 

  303. Saiki EM, Biringen S (1996) Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J Comput Phys 123:450–465

    Article  MATH  Google Scholar 

  304. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2003) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60

    Article  MathSciNet  Google Scholar 

  305. Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228:7821–7836

    Article  MathSciNet  MATH  Google Scholar 

  306. Guo ZL, Zheng CG, Shi BC (2002) Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E 65:046308

    Article  Google Scholar 

  307. Qian YH, D’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys Lett 17:479–484

    Article  MATH  Google Scholar 

  308. He X, Luo LS, Dembo M (1996) Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids. J Comput Phys 129:357–363

    Article  MathSciNet  MATH  Google Scholar 

  309. Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195:602–628

    Article  MATH  Google Scholar 

  310. Huang WX, Sung HJ (2009) An immersed boundary method for fluid–flexible structure interaction. Comput Methods Appl Mech Eng 198:2650–2661

    Article  MATH  Google Scholar 

  311. Sui Y, Chew YT, Roy P, Low H (2008) A hybrid method to study flow-induced deformation of three-dimensional capsules. J Comput Phys 227:6351–6371

    Article  MathSciNet  MATH  Google Scholar 

  312. Sun M, Lan SL (2004) A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. J Exp Biol 207:1887–1901

    Article  Google Scholar 

  313. Liu H (2009) Integrated modeling of insect flight: form morphology, kinematics to aerodynamics. J Comput Phys 228:439–459

    Article  MathSciNet  MATH  Google Scholar 

  314. Liu G, Yu L, Tong BG (2011) A numerical simulation of a fishlike body’s selfpropelled C-start. In: AIP conference proceedings, vol 1376, pp 480–483

  315. Skorczewski T, Cheer A, Cheung S, Wainwright PC (2010) Use of computational fluid dynamics to study forces exerted on prey by aquatic suction feeders. J R Soc Interface 7:475–484

    Article  Google Scholar 

  316. Skorczewski T, Cheer A, Wainwright PC (2012) The benefits of planar circular mouths on suction feeding performance. J R Soc Interface 9:1767–1773

    Article  Google Scholar 

  317. Atta DH, Vadyak T. A grid interfacing zonal algorithm for three dimensional transonic flows about aircraft configurations. AIAA paper 82-1017

  318. Benek JA, Steger JL, Dougherty FC. A flexible grid embedding technique with applications to the Euler equations. AIAA paper 83-1944

  319. Benek JA, Buning PG, Steger JL. A 3-D Chimera grid embedding technique. AIAA paper 85-1523

  320. Sakata T, Jameson A. Multi-body flow field calculations with overlapping-mesh method. AIAA paper 89-2179

  321. Wang ZJ (1995) A fully conservative interface algorithm for overlapped grids. J Comput Phys 122:96–106

    Article  MathSciNet  MATH  Google Scholar 

  322. Rai MM (1986) A conservative treatment of zonal boundary scheme for Euler equations calculations. J Comput Phys 62: 472–503

    Google Scholar 

  323. Berger MJ (1987) On conservation at grid interface. SIAM J Numer Anal 24:967–984

    Article  MathSciNet  MATH  Google Scholar 

  324. Tang HS, Jones SC, Sotiropoulos F (2003) An overset-grid method for 3D unsteady incompressible flows. J Comput Phys 191: 567–600

    Google Scholar 

  325. Eldredge JD. Efficient tools for the simulation of flapping wing flows. AIAA paper 2005-85

  326. Eldredge JD (2007) Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method. J Comput Phys 221:626–648

    Article  MathSciNet  MATH  Google Scholar 

  327. Hieber SE, Koumoutsakos P (2008) An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers. J Comput Phys 227:8636–8654

    Article  MathSciNet  MATH  Google Scholar 

  328. Cohen RCZ, Cleary PW, Mason B (2009) Simulations of human swimming using smoothed particle hydrodynamics. In: 7th International conference on CFD in the minerals and process industries, Melbourne, Australia

  329. Cohen RCZ, Cleary PW, Mason BR (2012) Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Hum Mov Sci 31:604–619

    Google Scholar 

  330. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  331. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore

    Book  Google Scholar 

  332. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    MathSciNet  Google Scholar 

  333. Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics applications to convective transport and fluid flow. Int J Numer Methods Eng 39: 3839–3866

    Google Scholar 

  334. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element methods: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MATH  Google Scholar 

  335. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  336. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  337. Belytschko T, Krongauz Y, Dolbow J, Gerlach C (1998) On the completeness of the meshfree particle methods. Int J Numer Methods Eng 43:785–819

    Article  MathSciNet  MATH  Google Scholar 

  338. Chew CS, Yeo KS, Shu C (2006) A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree-Cartesian grids. J Comput Phys 218:510–548

    Article  MathSciNet  MATH  Google Scholar 

  339. Yeo KS, Ang SJ, Shu C (2010) Simulation of fish swimming and manoeuvring by an SVD-GFD method on a hybrid meshfree-Cartesian grid. Comput Fluids 39:403–430

    Article  MATH  Google Scholar 

  340. Yu P, Yeo KS, Sundar DS, Ang SJ (2011) A three-dimensional hybrid meshfree-Cartesian scheme for fluid–body interaction. Int J Numer Methods Eng 88:385–408

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Scientific Research Program of China (No. B2220132013), the Fund for Basic Research of the Beijing Institute of Technology (No. 3160012211 305), and the National Natural Science Foundation of China (No. 31200704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Bao Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, HB., Xu, YQ., Chen, DD. et al. On numerical modeling of animal swimming and flight. Comput Mech 52, 1221–1242 (2013). https://doi.org/10.1007/s00466-013-0875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0875-2

Keywords

Navigation