Skip to main content
Log in

Asymmetric quadrilateral shell elements for finite strains

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Very good results in infinitesimal and finite strain analysis of shells are achieved by combining either the enhanced-metric technique or the selective-reduced integration for the in-plane shear energy and an assumed natural strain technique (ANS) in a non-symmetric Petrov–Galerkin arrangement which complies with the patch-test. A recovery of the original Wilson incompatible mode element is shown for the trial functions in the in-plane components. As a beneficial side-effect, Newton–Raphson convergence behavior for non-linear problems is improved with respect to symmetric formulations. Transverse-shear and in-plane patch tests are satisfied while distorted-mesh accuracy is higher than with symmetric formulations. Classical test functions with assumed-metric components are required for compatibility reasons. Verification tests are performed with advantageous comparisons being observed in all of them. Applications to large displacement elasticity and finite strain plasticity are shown with both low sensitivity to mesh distortion and (relatively) high accuracy. A equilibrium-consistent (and consistently linearized) updated-Lagrangian algorithm is proposed and tested. Concerning the time-step dependency, it was found that the consistent updated-Lagrangian algorithm is nearly time-step independent and can replace the multiplicative plasticity approach if only moderate elastic strains are present, as is the case of most metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andelfinger U, Ramm E (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Numer Methods Eng 36: 1311–1337

    Article  MATH  Google Scholar 

  2. Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, New York

    MATH  Google Scholar 

  3. Antman SS, Marlow RS (1991) Material constraints, lagrange multipliers, and compatibility. Arch Ration Mech Anal 116: 257–299

    Article  MathSciNet  MATH  Google Scholar 

  4. Areias P. Simplas. https://ssm7.ae.uiuc.edu:80/simplas

  5. Areias P, Belytschko T (2006) Analysis of finite strain anisotropic elastoplastic fracture in thin plates and shells. J Aerosp Eng 19(4): 259–270

    Article  Google Scholar 

  6. Areias P, César de Sá JMA, Conceição António CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Methods Eng 58: 1637–1682

    Article  MATH  Google Scholar 

  7. Areias P, Dias-da-Costa D, Pires EB, Infante Barbosa J (2012) A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity. Comput Mech 49: 545–564

    Article  MathSciNet  MATH  Google Scholar 

  8. Areias P, Garção J, Pires EB, Infante Barbosa J (2011) Exact corotational shell for finite strains and fracture. Comput Mech 48: 385–406

    Article  MathSciNet  MATH  Google Scholar 

  9. Areias P, Rabczuk T (2010) Smooth finite strain plasticity with nonlocal pressure support. Int J Numer Methods Eng 81: 106–134

    MATH  Google Scholar 

  10. Areias P, Ritto-Corrêa M, Martins JAC (2010) Finite strain plasticity, the stress condition and a complete shell model. Comput Mech 45: 189–209

    Article  MathSciNet  MATH  Google Scholar 

  11. Areias P, Song J-H, Belytschko T (2005) A finite-strain quadrilateral shell element based on discrete kirchhoff-love constraints. Int J Numer Methods Eng 64: 1166–1206

    Article  MATH  Google Scholar 

  12. Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements-the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22: 697–722

    Article  MATH  Google Scholar 

  13. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  14. Belytschko T, Wong BL (1989) Assumed strain stabilization procedure for the 9-node Lagrance shell element. Int J Numer Methods Eng 28: 385–414

    Article  MATH  Google Scholar 

  15. Birkhoff G, Schultz MH, Varga RS (1968) Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer Math 11: 232–256

    Article  MathSciNet  MATH  Google Scholar 

  16. Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18: 950–973

    Article  MATH  Google Scholar 

  17. Bruhns OT, Meyers A, Xiao H (2004) On non-corotational rates of oldroyd’s type and relevant issues in rate constitutive formulations. P R Soc Lond A Math 460: 909–928

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen C, Mangasarian OL (1995) Smoothing methods for convex inequalities and linear complementarity problems. Math Program 71(1): 51–69

    Article  MathSciNet  MATH  Google Scholar 

  19. Ciarlet PG (1991) Finite element methods (Part I). In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol 2. North-Holland, Amsterdam

    Google Scholar 

  20. Crisfield MA, Peng X (1996) Instabilities induced by coarse meshes for a nonlinear shell problem. Eng Comput 13(6): 110–114

    Article  MATH  Google Scholar 

  21. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four node shell element for general nonlinear analysis. Eng Comput 1: 77–88

    Article  Google Scholar 

  22. Eriksson A, Pacoste C (2002) Element formulation and numerical techniques for stability problems in shells. Comput Methods Appl Meach 191: 3775–3810

    Article  MATH  Google Scholar 

  23. Felippa CA (2006) Supernatural QUAD4: a template formulation. Comput Methods Appl Meach 195: 5316–5342

    Article  MathSciNet  MATH  Google Scholar 

  24. Flores FG, Oñate E (2011) Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free shell triangular element. Finite Elem Anal Des 47: 982–990

    Article  MathSciNet  Google Scholar 

  25. Hauptmann R, Doll S, Harnau M, Schweizerhof K (2001) Solid-shell elements with linear and quadratic shape functions at large deformations with near incompressible materials. Comput Struct 79: 1671–1685

    Article  Google Scholar 

  26. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineers. Wiley, New York

    Google Scholar 

  27. Hughes TJR (2000) The finite element method. Dover Publications, Mineola. Reprint of Prentice-Hall edition, 1987

  28. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: part I: three-dimensional shells. Comput Methods Appl Meach 26: 331–362

    Article  MATH  Google Scholar 

  29. Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4): 312–327

    Article  Google Scholar 

  30. Korelc J, Wriggers P (1997) Improved enhanced strain four-node element with Taylor expansion of the shape functions. Int J Numer Methods Eng 40: 407–421

    Article  MathSciNet  Google Scholar 

  31. Lee NS, Bathe KJ (1993) Effects of element distortions on the performance of isoparametric elements. Int J Numer Methods Eng 36: 3553–3576

    Article  MATH  Google Scholar 

  32. Liu WK, Guo Y, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput Methods Appl Meach 154: 69–132

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu WK, Hu Y-K, Belytschko T (1994) Multiple quadrature underintegrated finite elements. Int J Numer Methods Eng 37: 3263–3289

    Article  MathSciNet  MATH  Google Scholar 

  34. MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1: 1–20

    Article  Google Scholar 

  35. Ogden RW (1997) Non-linear elastic deformations. Dover Publications, Mineola

    Google Scholar 

  36. Ooi ET, Rajendran S, Yeo JH (2004) A 20-node hexahedron element with enhanced distortion tolerance. Int J Numer Methods Eng 60: 2501–2530

    Article  MATH  Google Scholar 

  37. Park KC, Stanley GM (1986) A curved C0 shell element based on assumed natural-coordinate strains. J Appl Mech-ASME 53: 278–290

    Article  MATH  Google Scholar 

  38. Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20: 1685–1695

    Article  MATH  Google Scholar 

  39. Piltner R, Taylor RL (1995) A quadrilateral mixed finite element with two enhanced strain modes. Int J Numer Methods Eng 38: 1783–1808

    Article  MathSciNet  MATH  Google Scholar 

  40. Rajendran S, Liew KM (2003) A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic field. Int J Numer Methods Eng 58: 1718–1748

    Google Scholar 

  41. Ramm E (1982) The Riks/Wempner approach—an extension of the displacement control method in nonlinear analyses. In: Recent advances in non-linear computational mechanics, chap 3. Pineridge Press Limited, Swansea, pp 63–86

  42. Sansour C, Bocko J (1998) On hybrid stress, hybrid strain and enhanced strain finite element formulations for a geometrically exact shell theory with drilling degrees of freedom. Int J Numer Methods Eng 43(1): 175–192

    Article  MATH  Google Scholar 

  43. Sansour C, Kollmann FG (2000) Families of 4-node and 9-node finite elements for a finite deformation shell theory. an assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput Mech 24: 435–447

    Article  MATH  Google Scholar 

  44. Schoop H, Hornig J, Wenzel T (2002) Remarks on Raasch’s hook. Tech Mech 4(22): 259–270

    Google Scholar 

  45. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33: 1413–1449

    Article  MathSciNet  MATH  Google Scholar 

  46. Simo JC, Fox DD, Rifai MS (December 1989) Geometrically exact stress resultant shell models: formulation and computational aspects of the nonlinear theory. In: Noor AK, Belytschko T, Simo JC (eds) Analytical and computational models of shells. vol 3 of CED. ASME, San Francisco, pp 161–190

  47. Simo JC, Hughes TJR (2000) Computational inelasticity. Springer, New York. Corrected second printing edition

  48. Sze KY, Kim YS, Soh AK (1997) A hybrid stress quadrilateral shell element with full rotational DOFS. Int J Numer Methods Eng 40: 1785–1800

    Article  Google Scholar 

  49. Truesdell C, Noll W (2004) The non-linear field theories of mechanics, 3rd edn. Springer, New York

    Book  Google Scholar 

  50. Wolfram Research Inc (2007) Mathematica

  51. Wagner W, Klinkel S, Gruttmann F (2002) Elastic and plastic analysis of thin-walled structures using improved hexahedral elements. Comput Struct 80: 857–869

    Article  Google Scholar 

  52. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ, Perrone N, Robinson AR, Schnobrich WC (eds) Numerical and computer models in structural mechanics. Academic Press, New York, pp 43–57

    Google Scholar 

  53. Wu C-C, Huang Y-Q, Ramm E (2001) A further study of incompatible models: revise-stiffness approach and completeness of trial functions. Comput Methods Appl Meach 190: 5923–5934

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Areias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Areias, P., Dias-da-Costa, D., Pires, E.B. et al. Asymmetric quadrilateral shell elements for finite strains. Comput Mech 52, 81–97 (2013). https://doi.org/10.1007/s00466-012-0799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0799-2

Keywords

Navigation