Skip to main content
Log in

Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Fluid–structure interaction (FSI) modeling of parachutes poses a number of computational challenges. These include the lightness of the parachute canopy compared to the air masses involved in the parachute dynamics, in the case of ringsail parachutes the geometric porosity created by the construction of the canopy from “rings” and “sails” with hundreds of “ring gaps” and “sail slits,” in the case of parachute clusters the contact between the parachutes, and “disreefing” from one stage to another when the parachute is used in multiple stages. The Team for Advanced Flow Simulation and Modeling (T⋆AFSM) has been successfully addressing these computational challenges with the Stabilized Space–Time FSI (SSTFSI) technique, which was developed and improved over the years by the T⋆AFSM and serves as the core numerical technology, and a number of special techniques developed in conjunction with the SSTFSI technique. The quasi-direct and direct coupling techniques developed by the T⋆AFSM, which are applicable to cases with nonmatching fluid and structure meshes at the interface, yield more robust algorithms for FSI computations where the structure is light. The special technique used in dealing with the geometric complexities of the rings and sails is the homogenized modeling of geometric porosity (HMGP), which was developed and improved in recent years by the T⋆AFSM. The surface-edge-node contact tracking (SENCT) technique was introduced by the T⋆AFSM as a contact algorithm where the objective is to prevent the structural surfaces from coming closer than a minimum distance in an FSI computation. The recently-introduced conservative version of the SENCT technique is more robust and is now an essential technology in the parachute cluster computations carried out by the T⋆AFSM. As an additional computational challenge, the parachute canopy might, by design, have some of its panels and sails removed. In FSI computation of parachutes with such “modified geometric porosity,” the flow through the “windows” created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the HMGP and needs to be actually resolved during the FSI computation. In this paper we focus on parachute disreefing, including the disreefing of parachute clusters, and parachutes with modified geometric porosity, including the reefed stages of such parachutes. We describe the additional special techniques we have developed to address the challenges involved and report FSI computations for parachutes and parachute clusters with disreefing and modified geometric porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MathSciNet  MATH  Google Scholar 

  2. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi:10.1109/2.237441

    Article  Google Scholar 

  3. Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the connection machine. Comput Methods Appl Mech Eng 108: 99–118. doi:10.1016/0045-7825(93)90155-Q

    Article  MathSciNet  MATH  Google Scholar 

  4. Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi:10.1016/0045-7825(94)00082-4

    Article  MATH  Google Scholar 

  5. Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid–body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi:10.1016/0045-7825(94)90029-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953. doi:10.1002/fld.1650211011

    Article  MATH  Google Scholar 

  7. Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi:10.1002/fld.1650211003

    Article  MathSciNet  MATH  Google Scholar 

  8. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi:10.1007/BF00350249

    Article  MATH  Google Scholar 

  9. Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24: 1321–1340. doi:10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C

    Article  MATH  Google Scholar 

  10. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi:10.1007/s004660050393

    Article  MATH  Google Scholar 

  11. Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274. doi:10.1016/S0045-7825(98)00299-0

    Article  MATH  Google Scholar 

  12. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi:10.1016/S0045-7825(00)00204-8

    Article  MATH  Google Scholar 

  13. Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386. doi:10.1016/S0045-7825(00)00208-5

    Article  MATH  Google Scholar 

  14. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi:10.1007/BF02897870

    Article  MATH  Google Scholar 

  15. Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191: 717–726. doi:10.1016/S0045-7825(01)00311-5

    Article  MATH  Google Scholar 

  16. Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191: 673–687. doi:10.1016/S0045-7825(01)00312-7

    Article  MATH  Google Scholar 

  17. Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019

    Article  MATH  Google Scholar 

  18. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200. doi:10.1016/S0045-7825(00)00388-1

    Article  MATH  Google Scholar 

  19. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi:10.1115/1.1530635

    Article  MATH  Google Scholar 

  20. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032. doi:10.1016/j.cma.2003.12.046

    Article  MATH  Google Scholar 

  21. Brummelen EH, Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Sci Comput 27: 599–621

    Article  MathSciNet  MATH  Google Scholar 

  22. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi:10.1016/j.cma.2004.09.014

    Article  MathSciNet  MATH  Google Scholar 

  23. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi:10.1016/j.cma.2005.08.023

    Article  MathSciNet  MATH  Google Scholar 

  24. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi:10.1016/j.cma.2005.05.050

    Article  MathSciNet  MATH  Google Scholar 

  25. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi:10.1007/s00466-006-0065-6

    Article  MATH  Google Scholar 

  26. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  27. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi:10.1016/j.compfluid.2005.02.011

    Article  MathSciNet  MATH  Google Scholar 

  28. Brenk M, Bungartz H-J, Mehl M, Neckel T (2006) Fluid–structure interaction on Cartesian grids: flow simulation and coupling environment”. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, Lecture notes in computational science and engineering, vol 53. Springer, Heidelberg, pp 233–269

    Google Scholar 

  29. Lohner R, Cebral JR, Yang C, Baum JD, Mestreau EL, Soto O (2006) Extending the range of applicability of the loose coupling approach for FSI simulations. In: Bungartz H-J, Schafer M (eds) Fluid–structure interaction, Lecture notes in computational science and engineering, vol 53. Springer, Heidelberg, pp 82–100

    Google Scholar 

  30. Bletzinger K-U, Wuchner R, Kupzok A (2006) Algorithmic treatment of shells and free form-membranes in FSI. In: Bungartz H-J, Schafer M (eds) Fluid–Structure interaction, Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 336–355

    Google Scholar 

  31. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi:10.1002/fld.1443

    Article  MathSciNet  MATH  Google Scholar 

  32. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi:10.1016/j.compfluid.2005.07.014

    Article  MATH  Google Scholar 

  33. Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146

    Article  MATH  Google Scholar 

  34. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi:10.1002/fld.1430

    Article  MathSciNet  MATH  Google Scholar 

  35. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40: 167–183. doi:10.1007/s00466-006-0093-2

    Article  MATH  Google Scholar 

  36. Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019. doi:10.1002/fld.1466

    Article  MATH  Google Scholar 

  37. Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54: 841–853. doi:10.1002/fld.1473

    Article  MathSciNet  MATH  Google Scholar 

  38. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi:10.1002/fld.1497

    Article  MathSciNet  MATH  Google Scholar 

  39. Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi:10.1007/s00466-008-0276-0

    Article  MathSciNet  MATH  Google Scholar 

  40. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi:10.1007/s00466-008-0261-7

    Article  MATH  Google Scholar 

  41. Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi:10.1007/s00466-008-0260-8

    Article  MATH  Google Scholar 

  42. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi:10.1002/fld.1633

    Article  MathSciNet  MATH  Google Scholar 

  43. Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi:10.1007/s00466-008-0299-6

    Article  MathSciNet  MATH  Google Scholar 

  44. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi:10.1007/s00466-008-0325-8

    Article  MATH  Google Scholar 

  45. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37

    Article  MathSciNet  MATH  Google Scholar 

  46. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, WaterlooK Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178

    Article  Google Scholar 

  47. Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90

    Article  MATH  Google Scholar 

  48. Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150

    Article  MathSciNet  MATH  Google Scholar 

  49. Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech 43: 91–101

    Article  MATH  Google Scholar 

  50. Sternel DC, Schaefer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid–structure interaction simulations using an implicit partitioned approach. Comput Mech 43: 103–113

    Article  MATH  Google Scholar 

  51. Mehl M, Brenk M, Bungartz H-J, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids. Comput Mech 43: 115– 124

    Article  MATH  Google Scholar 

  52. Idelsohn SR, Marti J., Souto-Iglesias A, Onate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43: 125–132

    Article  MATH  Google Scholar 

  53. Idelsohn SR, Marti J, Limache A, Onate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197: 1762–1776

    Article  MathSciNet  MATH  Google Scholar 

  54. Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi:10.1016/j.cma.2008.05.024

    Article  MathSciNet  MATH  Google Scholar 

  55. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi:10.1016/j.cma.2008.08.020

    Article  MathSciNet  MATH  Google Scholar 

  56. Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi:10.1115/1.3059576

    Article  Google Scholar 

  57. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  58. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89

    Article  MathSciNet  MATH  Google Scholar 

  59. Idelsohn SR, Pin FD, Rossi R, Onate E (2009) Fluid–structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80: 1261–1294

    Article  MATH  Google Scholar 

  60. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi:10.1002/cnm.1241

    Article  MATH  Google Scholar 

  61. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi:10.1007/s00466-009-0423-2

    Article  MathSciNet  MATH  Google Scholar 

  62. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi:10.1007/s00466-009-0425-0

    Article  MathSciNet  MATH  Google Scholar 

  63. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi:10.1002/cnm.1289

    Article  MathSciNet  MATH  Google Scholar 

  64. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi:10.1007/s00466-009-0426-z

    Article  MATH  Google Scholar 

  65. Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid–structure–contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Mech 46: 53–67

    Article  MathSciNet  MATH  Google Scholar 

  66. Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46: 185–197

    Article  MathSciNet  MATH  Google Scholar 

  67. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi:10.1007/s00466-009-0439-7

    Article  MATH  Google Scholar 

  68. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16

    Article  MathSciNet  MATH  Google Scholar 

  69. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218. doi:10.1002/fld.2221

    Article  MATH  Google Scholar 

  70. Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46: 147–157

    Article  MathSciNet  MATH  Google Scholar 

  71. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498

    Article  Google Scholar 

  72. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416

    Article  MATH  Google Scholar 

  73. Ryzhakov PB, Rossi R, Idelsohn SR, Onate E (2010) A monolithic Lagrangian approach for fluid–structure interaction problems. Comput Mech 46: 883–899

    Article  MathSciNet  MATH  Google Scholar 

  74. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi:10.1002/fld.2400

    Article  MATH  Google Scholar 

  75. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253

    Article  MATH  Google Scholar 

  76. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi:10.1002/fld.2348

    Article  MATH  Google Scholar 

  77. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi:10.1002/fld.2360

    Article  MATH  Google Scholar 

  78. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi:10.1002/fld.2359

    Article  MATH  Google Scholar 

  79. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi:10.1002/fld.2415

    Article  MathSciNet  MATH  Google Scholar 

  80. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65: 324–340. doi:10.1002/fld.2448

    Article  MATH  Google Scholar 

  81. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27: 1665–1710. doi:10.1002/cnm.1433

    Article  MathSciNet  MATH  Google Scholar 

  82. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267. doi:10.1007/s00466-011-0571-z

    Article  MathSciNet  MATH  Google Scholar 

  83. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344. doi:10.1007/s00466-011-0589-2

    Article  MATH  Google Scholar 

  84. Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364. doi:10.1007/s00466-011-0590-9

    Article  MATH  Google Scholar 

  85. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47: 593–599

    Article  MathSciNet  Google Scholar 

  86. Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79: 010907. doi:10.1115/1.4005070

    Article  Google Scholar 

  87. Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79: 010908. doi:10.1115/1.4005071

    Article  Google Scholar 

  88. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79: 010903. doi:10.1115/1.4005073

    Article  Google Scholar 

  89. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657. doi:10.1007/s00466-011-0614-5

    Article  MATH  Google Scholar 

  90. Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid–thin structure interactions on a non-interface-fitted mesh. Comput Mech 48: 319–332. doi:10.1007/s00466-011-0600-y

    Article  MathSciNet  MATH  Google Scholar 

  91. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48: 377–384. doi:10.1007/s00466-011-0619-0

    Article  MATH  Google Scholar 

  92. Onate E, Celigueta MA, Idelsohn SR, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech 48: 307–318. doi:10.1007/s00466-011-0617-2

    Article  MathSciNet  MATH  Google Scholar 

  93. Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space–time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48: 293–306. doi:10.1007/s00466-011-0618-1

    Article  MathSciNet  MATH  Google Scholar 

  94. Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid–structure interaction computations using elements without mid-side nodes. Comput Mech 48: 269–276. doi:10.1007/s00466-011-0620-7

    Article  MathSciNet  MATH  Google Scholar 

  95. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19: 125–169. doi:10.1007/s11831-012-9070-4

    Article  MathSciNet  Google Scholar 

  96. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225. doi:10.1007/s11831-012-9071-3

    Article  MathSciNet  Google Scholar 

  97. Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22: 1230001. doi:10.1142/S0218202512300013

    Article  Google Scholar 

  98. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech. doi:10.1007/s00466-012-0759-x

  99. Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech. doi:10.1007/s00466-012-0758-y

  100. Stein KR, Benney RJ, Kalro V, Johnson AA, Tezduyar TE (1997) Parallel computation of parachute fluid–structure interactions. In: Proceedings of AIAA 14th Aerodynamic Decelerator Systems Technology Conference AIAA Paper 97-1505, San Francisco

  101. Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid–structure interactions of a round parachute: modeling and simulation techniques. J Aircr 38: 800–808. doi:10.2514/2.2864

    Article  Google Scholar 

  102. Stein K, Tezduyar T, Kumar V, Sathe S, Benney R, Thornburg E, Kyle C, Nonoshita T (2003) Aerodynamic interactions between parachute canopies. J Appl Mech 70: 50–57. doi:10.1115/1.1530634

    Article  MATH  Google Scholar 

  103. Stein K, Tezduyar T, Benney R (2003) Computational methods for modeling parachute systems. Comput Sci Eng 5: 39–46. doi:10.1109/MCISE.2003.1166551

    Article  Google Scholar 

  104. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi:10.1016/S0065-2156(08)70153-4

    Article  MathSciNet  MATH  Google Scholar 

  105. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi:10.1016/0045-7825(92)90059-S

    Article  MathSciNet  MATH  Google Scholar 

  106. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi:10.1016/0045-7825(92)90060-W

    Article  MathSciNet  MATH  Google Scholar 

  107. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi:10.1002/fld.505

    Article  MathSciNet  MATH  Google Scholar 

  108. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MathSciNet  MATH  Google Scholar 

  109. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi:10.1016/0045-7825(92)90141-6

    Article  MATH  Google Scholar 

  110. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods—space–time formulations, iterative strategies and massively parallel implementations. In: new methods in transient analysis PVP-Vol. 246/AMD-Vol. 143. ASME, New York, pp 7–24

  111. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119: 73–94. doi:10.1016/0045-7825(94)00077-8

    Article  MATH  Google Scholar 

  112. Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics, fluids, Vol 3, Chap 17. Wiley, New York

    Google Scholar 

  113. Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36: 207–223. doi:10.1016/j.compfluid.2005.02.010

    Article  MathSciNet  MATH  Google Scholar 

  114. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20: 359–392

    Article  MathSciNet  Google Scholar 

  115. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869

    Article  MathSciNet  MATH  Google Scholar 

  116. Spielman TR (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Ph.D. thesis, Rice University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayfun E. Tezduyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takizawa, K., Fritze, M., Montes, D. et al. Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50, 835–854 (2012). https://doi.org/10.1007/s00466-012-0761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0761-3

Keywords

Navigation