Skip to main content
Log in

The theory of Cosserat points applied to the analyses of wrinkled and slack membranes

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Numerical simulations of wrinkling and slacking of geometrically nonlinear membrane structures are considered using planar Cosserat points. The finite element method (FEM) solves the problem by weakly projecting the governing PDEs and thus requires numerical integration. This is contrasted with Cosserat point elements wherein governing equations are solved in an averaged sense at a point. The point is equipped with a few directors and can describe the deformation kinematics of a finite region containing itself. Numerical modeling through the Cosserat point provides freedom from numerical integration and locking. Presently a plane stress quadrilateral Cosserat point element is used to study the wrinkling and slacking of isotropic membranes. The approach by Roddeman et al. (ASME J Appl Mech 54:884–892, 1987) is exploited to detect wrinkled/slack elements in the membrane structure. Here stretching parameters are employed to modify the deformation tensor to represent a fictive non-wrinkled surface. A variation of the algorithm to detect spatial variations of the stretching parameters within a point element is also described. Several numerical examples on static deformations of wrinkled/slack membranes are presented. Limited comparisons with a reported experiment and with results via the FEM as well as a mesh-free approach are provided to assess the performance of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b i :

ith director couple corresponding to body force

f i :

ith external director couple

σ1, σ2:

principal Cauchy stresses

T1 ,T2:

principal Cosserat stresses

\({\overline {\bf F}}\) :

auxiliary deformation gradient

F :

Cosserat deformation gradient

F * :

3D deformation gradient

σ avg :

average Cauchy stress tensor

σ :

Cauchy stress tensor

d 1/2 T :

Cosserat stress tensor

Π:

homogeneous part of the strain energy

Ψ :

inhomogeneous part of the strain energy

β i :

ith inhomogeneous strain corresponding to the ith director

t i :

ith intrinsic director couple

Φ :

total strain energy

γ1 ,γ2:

stretching (wrinkliness) parameters

E, μ , ν :

Young’s modulus, shear modulus and Poisson’s ratio

K1 ,K2 ,K3:

inhomogeneous constitutive constants

\({\overline {\bf t}^i,\overline {\bf f}^i,\overline {\bf b}^i}\) :

ith nodal quantity corresponding to t, f, b

θ1, θ2, θ3:

locally convected curvilinear coordinates

\({\kappa_1^1 ,\kappa_1^2 ,\kappa_1^3}\) :

normalized inhomogeneous strain measures

\({\overline{\bf D}_{\rm i},\overline {\bf d}_{\rm i} }\) :

ith nodal deformed and deformed position vectors

A:

transformation matrix

D0, D:

initial and final thicknesses of the membrane element

Di, di:

ith undeformed and deformed contravariant director vector

D i , d i :

ith undeformed and deformed covariant director vectors

E :

homogeneous strain measure

G i , g i :

ith undeformed and deformed base vectors

H, L:

width and length of the planar Cosserat point

K :

constitutive tensor

m :

mass of the Cosserat point

n1, n2:

unit vectors representing principal stress directions

\({{\bf n^*}_{1}, {\bf n^*}_{2}}\) :

unit vectors representing principal stress directions in 3D setup

N 3 :

unit surface normal

V, v:

volumes of the Cosserat point in undeformed and deformed states

X, x :

undeformed and deformed position vectors of a material point

References

  1. Boerner EFI, Loehnert S, Wriggers P (2007) A new finite element based on the theory of a Cosserat point extension to initially distorted elements for 2D plane strain. Int J Numer Methods Eng 71(4): 454–472

    Article  MathSciNet  Google Scholar 

  2. Epstein M, Forcinito Mario A (2001) Anisotropic membrane wrinkling: theory and analysis. Int J Solids Struct 38: 5253–5272

    Article  MATH  Google Scholar 

  3. Green AE, Naghdi PM (1991) A thermomechanical theory of a Cosserat point with application to composite materials. Q J Mech Appl Math 44: 335–355

    Article  MATH  MathSciNet  Google Scholar 

  4. Green AE, Naghdi PM, Wenner ML (1974a) On the theory of rods. Part I. Derivations from the three-dimensional equations. Proc R Soc Lond A 337: 451–483

    MATH  MathSciNet  Google Scholar 

  5. Green AE, Naghdi PM, Wenner ML (1974b) On the theory of rods. Part II. Developments by direct approach. Proc R Soc Lond A 337: 485–507

    MATH  MathSciNet  Google Scholar 

  6. Lu K, Accorsi M, Leonard J (2001) Finite element analysis of membrane wrinkling. Int J Numer Methods Eng 50: 1017–1038

    Article  MATH  Google Scholar 

  7. Kang S, Im S (1997) Finite element analysis of wrinkling membranes. ASME J Appl Mech 64: 263–269

    MATH  Google Scholar 

  8. Kang S, Im S (1999) Finite element analysis of dynamic response of wrinkling membranes. Comput Methods Appl Mech Eng 173: 227–240

    Article  MATH  Google Scholar 

  9. Loehnert S, Boerner EFI, Rubin MB, Wriggers P (2005) Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput Mech 36: 255–265

    Article  MATH  Google Scholar 

  10. Mansfield EH (1968) Tension field theory: a new approach which shows its duality with inextensional theory. In: Proc. XII Int. Cong. Appl. Mech., pp 305–320

  11. Mansfield EH (1970) Load transfer via a wrinkled membrane. Proc R Soc Lond A 316: 269–289

    Article  Google Scholar 

  12. Miller RK, Hedgepeth JM, Weingarten VI, Das P, Kahyai S (1985) Finite element analysis of partly wrinkled membranes. Comput Struct 20: 631–639

    Article  Google Scholar 

  13. Miyamura T (2000) Wrinkling on stretched circular membrane under in-plane torsion: bifurcation analyses and experiments. Eng Struct 23: 1407–1425

    Article  Google Scholar 

  14. Miyazaki Y (2005) Wrinkle/slack model and finite element dynamics of membrane. Int J Num Methods Eng 66(7): 1179–1209

    Article  MathSciNet  Google Scholar 

  15. Nadler B, Rubin MB (2003a) A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int J Solids Struct 40: 4585–4614

    Article  MATH  Google Scholar 

  16. Nadler B, Rubin MB (2003b) Determination of hourglass coefficients in the theory of a Cosserat point for nonlinear elastic beams. Int J Solids Struct 40: 6163–6188

    Article  MATH  Google Scholar 

  17. Naghdi PM (1972) The theory of plates and shells. In: Truesdell C(eds) S. Flugge’s Handbuch der Physik, vol. VIa/2. Springer, Berlin, pp 425–640

    Google Scholar 

  18. Pipkin AC (1986) The relaxed energy density for isotropic elastic membrane. IMA J Appl Math 36: 85–99

    Article  MATH  MathSciNet  Google Scholar 

  19. Raible T, Tegeler K, Löhnert S, Wriggers P (2005) Development of a wrinkling algorithm for orthotropic membrane materials. Comput Methods Appl Mech Eng 194: 2550–2568

    Article  MATH  Google Scholar 

  20. Roddeman DG, Drukker J, Oomens CWJ, Janssen JD (1987) The wrinkling of thin membranes. Part I. Theory. Part II. Numerical analysis. ASME J Appl Mech 54: 884–892

    MATH  Google Scholar 

  21. Rubin MB (1985b) On the numerical solution of one dimensional continuum problems using the theory of a Cosserat point. ASME J Appl Mech 52: 373–378

    MATH  Google Scholar 

  22. Rubin MB (1985a) On the theory of Cosserat point and its application to the numerical solution of continuum problems. ASME J Appl Mech 52: 368–372

    MATH  Google Scholar 

  23. Rubin MB (2000) Cosserat theories: shells, rods and points. In: Solid mechanics and its applications, vol 79. Kluwer, The Netherlands

  24. Rubin MB (1995) Numerical solution of two- and three-dimensional thermomechanical problems using the theory of a Cosserat point, J. of Math. and Physics (ZAMP) 46, Special Issue, S308-S334. In: Casey J, Crochet MJ (eds) Theoretical, experimental, and numerical contributions to the mechanics of fluids and solids. Brikhauser Verlag, Basel

  25. Shaw A, Roy D (2007a) A NURBS-based error reproducing Kernel method with applications in solid mechanics. Comput Mech 40(1): 127–148

    Article  MathSciNet  MATH  Google Scholar 

  26. Shaw A, Roy D (2007b) Improved procedures for static and dynamic analyses of wrinkled membranes. ASME J Appl Mech 74(3): 590–594

    Article  MATH  Google Scholar 

  27. Shaw A, Roy D (2007c) Analyses of wrinkled and slack membranes through an error reproducing mesh-free method. Int J Solids Struct 44(11–12): 3939–3972

    Article  MATH  Google Scholar 

  28. Stanuszek M (2003) FE analysis of large deformations of membranes with wrinkling. Finite Elements Anal Des 39: 599–618

    Article  Google Scholar 

  29. Stein M, Hedgepeth JM (1961) Analysis of partly wrinkled membranes. Tech. Rep. NASA TN D-813

  30. Wagner H (1929) Flat sheet metal girder with very thin metal web. In Zeitschriftfür Flugtechnik und Motorluftschiffahrt, 20

  31. Wu CH (1978) Nonlinear wrinkling of nonlinear membranes of revolution. ASME J Appl Mech 45: 533–538

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, B., Shaw, A. & Roy, D. The theory of Cosserat points applied to the analyses of wrinkled and slack membranes. Comput Mech 43, 415–429 (2009). https://doi.org/10.1007/s00466-008-0314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0314-y

Keywords

Navigation