Skip to main content

Advertisement

Log in

Advanced intraoperative imaging methods for laparoscopic anatomy navigation: an overview

  • Review
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Safety and efficiency are important topics in minimally invasive surgery. Apart from its advantages, laparoscopic surgery has the following drawbacks: two-dimensional imaging, challenging eye–hand coordination, and absence of tactile feedback. Enhanced imaging with earlier and clearer identification of essential tissue types can partly overcome these disadvantages. Research groups worldwide are investigating new technologies for image-guided surgery purposes. This review article gives an overview of current developments in surgical optical imaging for improved anatomic identification and physiologic tissue characterization during laparoscopic gastrointestinal surgery.

Methods

A systematic literature search in the PubMed database was conducted. Eligible studies reported on any kind of novel optical imaging technique applied for anatomic identification or physiologic tissue characterization in laparoscopic gastrointestinal surgery. Gynecologic and urologic procedures also were included whenever vascular, nerve, ureter, or lymph node imaging was concerned.

Results

Various surgical imaging techniques for enhanced intraoperative visualization of essential tissue types (i.e., blood vessel, bile duct, ureter, nerve, lymph node) and for tissue characterization purposes such as assessment of blood perfusion were identified. An overview of preclinical and clinical experiences is given as well as the potential added value for intraoperative anatomic localization and characterization during laparoscopy.

Conclusion

Implementation of new optical imaging methods during laparoscopic gastrointestinal surgery can improve intraoperative anatomy navigation. This may lead to increased patient safety (preventing iatrogenic functional tissue injury) and procedural efficiency (shorter operating time). Near-infrared fluorescence imaging seems to possess the greatest potential for implementation in clinical practice in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MIS:

Minimally invasive surgery

NOTES:

Natural orifice transluminal endoscopic surgery

SILS:

Single-incision laparoscopic surgery

IR:

Infrared

IOC:

Intraoperative cholangiography

NIRFC:

Near-infrared fluorescence cholangiography

ICG:

Indocyanin green

NIR:

Near-infrared

MB:

Methylene blue

SLN:

Sentinel lymph node

HSI:

Hyperspectral imaging

OCT:

Optical coherence tomography

OI:

Optoacoustic imaging

References

  1. Schwenk W, Haase O, Neudecker J, Muller JM (2005) Short term benefits for laparoscopic colorectal resection. Cochrane Database Syst Rev:CD003145

  2. Sauerland S, Walgenbach M, Habermalz B, Seiler CM, Miserez M (2011) Laparoscopic versus open surgical techniques for ventral or incisional hernia repair. Cochrane Database Syst Rev:CD007781

  3. Stassen LP, Bemelman WA, Meijerink J (2010) Risks of minimally invasive surgery underestimated: a report of the Dutch Health Care Inspectorate. Surg Endosc 24:495–498

    Article  PubMed  Google Scholar 

  4. Cadeddu JA, Jackman SV, Schulam PG (2001) Laparoscopic infrared imaging. J Endourol 15:111–116

    Article  PubMed  CAS  Google Scholar 

  5. Roberts WW, Dinkel TA, Schulam PG, Bonnell L, Kavoussi LR (1997) Laparoscopic infrared imaging. Surg Endosc 11:1221–1223

    Article  PubMed  CAS  Google Scholar 

  6. Shussman N, Abu Gazala M, Schlager A, Elazary R, Khalaileh A, Zamir G, Kushnir D, Rivkind AI, Mintz Y (2011) Laparoscopic infrared imaging: the future vascular map. J Laparoendosc Adv Surg Tech A 21:797–801

    Article  PubMed  Google Scholar 

  7. Kim K, Schwaitzberg S, Onel E (2001) An infrared ureteral stent to aid in laparoscopic retroperitoneal lymph node dissection. J Urol 166:1815–1816

    Article  PubMed  CAS  Google Scholar 

  8. Hanna BV, Gorbach AM, Gage FA, Pinto PA, Silva JS, Gilfillan LG, Kirk AD, Elster EA (2008) Intraoperative assessment of critical biliary structures with visible range/infrared image fusion. J Am Coll Surg 206:1227–1231

    Article  PubMed  Google Scholar 

  9. Liu JJ, Alemozaffar M, McHone B, Dhanani N, Gage F, Pinto PA, Gorbach AM, Elster E (2008) Evaluation of real-time infrared intraoperative cholangiography in a porcine model. Surg Endosc 22:2659–2664

    Article  PubMed  Google Scholar 

  10. Nagata K, Endo S, Hidaka E, Tanaka J, Kudo SE, Shiokawa A (2006) Laparoscopic sentinel node mapping for colorectal cancer using infrared ray laparoscopy. Anticancer Res 26:2307–2311

    PubMed  Google Scholar 

  11. Ishikawa K, Yasuda K, Shiromizu A, Etoh T, Shiraishi N, Kitano S (2007) Laparoscopic sentinel node navigation achieved by infrared ray electronic endoscopy system in patients with gastric cancer. Surg Endosc 21:1131–1134

    Article  PubMed  CAS  Google Scholar 

  12. Yano K, Nimura H, Mitsumori N, Takahashi N, Kashiwagi H, Yanaga K (2011) The efficiency of micrometastasis by sentinel node navigation surgery using indocyanine green and infrared ray laparoscopy system for gastric cancer. Gastric Cancer 15(3):287–291

    Article  PubMed  Google Scholar 

  13. Swijnenburg RJ, Crane LM, Buddingh KT, van de Velde CJ, Vahrmeijer AJ, van Dam GM (2012) Intraoperative imaging using fluorescence. Ned Tijdschr Geneeskd 156:A4316

    PubMed  Google Scholar 

  14. Cahill RA, Ris F, Mortensen NJ (2011) Near-infrared laparoscopy for real-time intraoperative arterial and lymphatic perfusion imaging. Colorectal Dis 13(Suppl 7):12–17

    Article  PubMed  Google Scholar 

  15. Stiles BM, Adusumilli PS, Bhargava A, Fong Y (2006) Fluorescent cholangiography in a mouse model: an innovative method for improved laparoscopic identification of the biliary anatomy. Surg Endosc 20:1291–1295

    Article  PubMed  CAS  Google Scholar 

  16. Holzinger F, Krahenbuhl L, Schteingart CD, Ton-Nu HT, Hofmann AF (2001) Use of a fluorescent bile acid to enhance visualization of the biliary tract and bile leaks during laparoscopic surgery in rabbits. Surg Endosc 15:209–212

    Article  PubMed  CAS  Google Scholar 

  17. Mohsen AA, Elbasiouny MS, Fawzy YS (2012) Fluorescence-guided laparoscopic cholecystectomy: a new technique for visualization of biliary system by using fluorescein. Surg Innov. doi:10.1177/1553350612442794

  18. Figueiredo JL, Siegel C, Nahrendorf M, Weissleder R (2010) Intraoperative near-infrared fluorescent cholangiography (NIRFC) in mouse models of bile duct injury. World J Surg 34:336–343

    Article  PubMed  Google Scholar 

  19. Figueiredo JL, Nahrendorf M, Vinegoni C, Weissleder R (2011) Intraoperative near-infrared fluorescent cholangiography (NIRFC) in mouse models of bile duct injury: reply. World J Surg 35:694–695

    Article  PubMed  Google Scholar 

  20. Tagaya N, Shimoda M, Kato M, Nakagawa A, Abe A, Iwasaki Y, Oishi H, Shirotani N, Kubota K (2010) Intraoperative exploration of biliary anatomy using fluorescence imaging of indocyanine green in experimental and clinical cholecystectomies. J Hepatobiliary Pancreat Sci 17:595–600

    Article  PubMed  Google Scholar 

  21. Matsui A, Tanaka E, Choi HS, Winer JH, Kianzad V, Gioux S, Laurence RG, Frangioni JV (2010) Real-time intraoperative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery 148:87–95

    Article  PubMed  Google Scholar 

  22. Ishizawa T, Bandai Y, Ijichi M, Kaneko J, Hasegawa K, Kokudo N (2010) Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 97:1369–1377

    Article  PubMed  CAS  Google Scholar 

  23. Ishizawa T, Kaneko J, Inoue Y, Takemura N, Seyama Y, Aoki T, Beck Y, Sugawara Y, Hasegawa K, Harada N, Ijichi M, Kusaka K, Shibasaki M, Bandai Y, Kokudo N (2011) Application of fluorescent cholangiography to single-incision laparoscopic cholecystectomy. Surg Endosc 25:2631–2636

    Article  PubMed  Google Scholar 

  24. Aoki T, Murakami M, Yasuda D, Shimizu Y, Kusano T, Matsuda K, Niiya T, Kato H, Murai N, Otsuka K, Kusano M, Kato T (2010) Intraoperative fluorescent imaging using indocyanine green for liver mapping and cholangiography. J Hepatobiliary Pancreat Sci 17:590–594

    Article  PubMed  Google Scholar 

  25. Schols RM, Bouvy ND, van Dam RM, Stassen LP (2012) Fluorescence imaging of the extrahepatic bile ducts during laparoscopic cholecystectomy: preliminary results of a pilot study. 20th International Congress of the EAES, 20–23 June 2012, Brussels, Belgium. http://www.eventure-online.com/eventure/publicAbstractView.do?id=185679&congressId=5608. Accessed 22 June 2012

  26. Ashitate Y, Stockdale A, Choi HS, Laurence RG, Frangioni JV (2011) Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy. J Surg Res 176(1):7–13

    Article  PubMed  Google Scholar 

  27. Mitsuhashi N, Kimura F, Shimizu H, Imamaki M, Yoshidome H, Ohtsuka M, Kato A, Yoshitomi H, Nozawa S, Furukawa K, Takeuchi D, Takayashiki T, Suda K, Igarashi T, Miyazaki M (2008) Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery. J Hepatobiliary Pancreat Surg 15:508–514

    Article  PubMed  Google Scholar 

  28. Matsui A, Tanaka E, Choi HS, Kianzad V, Gioux S, Lomnes SJ, Frangioni JV (2010) Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery 148:78–86

    Article  PubMed  Google Scholar 

  29. Tanaka E, Ohnishi S, Laurence RG, Choi HS, Humblet V, Frangioni JV (2007) Real-time intraoperative ureteral guidance using invisible near-infrared fluorescence. J Urol 178:2197–2202

    Article  PubMed  CAS  Google Scholar 

  30. Ankersmit M, van der Pas MH, van Dam DA, Meijerink WJ (2011) Near-infrared fluorescence lymphatic laparoscopy of the colon and mesocolon. Colorectal Dis 13(Suppl 7):70–73

    Article  PubMed  Google Scholar 

  31. Cahill RA, Anderson M, Wang LM, Lindsey I, Cunningham C, Mortensen NJ (2012) Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc 26:197–204

    Article  PubMed  Google Scholar 

  32. van der Pas MH, van Dongen GA, Cailler F, Pelegrin A, Meijerink WJ (2010) Sentinel node procedure of the sigmoid using indocyanine green: feasibility study in a goat model. Surg Endosc 24:2182–2187

    Article  PubMed  Google Scholar 

  33. Miyashiro I, Miyoshi N, Hiratsuka M, Kishi K, Yamada T, Ohue M, Ohigashi H, Yano M, Ishikawa O, Imaoka S (2008) Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging. Ann Surg Oncol 15:1640–1643

    Article  PubMed  Google Scholar 

  34. Miyashiro I, Kishi K, Yano M, Tanaka K, Motoori M, Ohue M, Ohigashi H, Takenaka A, Tomita Y, Ishikawa O (2011) Laparoscopic detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging. Surg Endosc 25:1672–1676

    Article  PubMed  Google Scholar 

  35. Tajima Y, Murakami M, Yamazaki K, Masuda Y, Kato M, Sato A, Goto S, Otsuka K, Kato T, Kusano M (2010) Sentinel node mapping guided by indocyanine green fluorescence imaging during laparoscopic surgery in gastric cancer. Ann Surg Oncol 17:1787–1793

    Article  PubMed  Google Scholar 

  36. Yoshida M, Kubota K, Kuroda J, Ohta K, Nakamura T, Saito J, Kobayashi M, Sato T, Beck Y, Kitagawa Y, Kitajima M (2012) Indocyanine green injection for detecting sentinel nodes using color fluorescence camera in the laparoscopy-assisted gastrectomy. J Gastroenterol Hepatol 27(Suppl 3):29–33

    Article  PubMed  CAS  Google Scholar 

  37. van der Poel HG, Buckle T, Brouwer OR, Valdes Olmos RA, van Leeuwen FW (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60:826–833

    Article  PubMed  Google Scholar 

  38. Harada K, Miwa M, Fukuyo T, Watanabe S, Enosawa S, Chiba T (2009) ICG fluorescence endoscope for visualization of the placental vascular network. Minim Invasive Ther Allied Technol 18:1–5

    Article  PubMed  Google Scholar 

  39. Tobis S, Knopf J, Silvers C, Yao J, Rashid H, Wu G, Golijanin D (2011) Near-infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol 186:47–52

    Article  PubMed  Google Scholar 

  40. Horstmann R, Palmes D, Rupp D, Hohlbach G, Spiegel HU (2002) Laparoscopic fluorometry: a new minimally invasive tool for investigation of the intestinal microcirculation. J Invest Surg 15:343–350

    Article  PubMed  CAS  Google Scholar 

  41. McGinty JJ Jr, Hogle N, Fowler DL (2003) Laparoscopic evaluation of intestinal ischemia using fluorescein and ultraviolet light in a porcine model. Surg Endosc 17:1140–1143

    Article  PubMed  Google Scholar 

  42. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  43. Aron M, Kaouk JH, Hegarty NJ, Colombo JR Jr, Haber GP, Chung BI, Zhou M, Gill IS (2007) Second prize: preliminary experience with the Niris optical coherence tomography system during laparoscopic and robotic prostatectomy. J Endourol 21:814–818

    Article  PubMed  Google Scholar 

  44. Chitchian S, Weldon TP, Fried NM (2009) Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland. J Biomed Opt 14:044033

    Article  PubMed  Google Scholar 

  45. Chitchian S, Weldon TP, Fiddy MA, Fried NM (2010) Combined image-processing algorithms for improved optical coherence tomography of prostate nerves. J Biomed Opt 15:046014

    Article  PubMed  Google Scholar 

  46. Cahill RA (2009) Regional nodal staging for early stage colon cancer in the era of endoscopic resection and NOTES. Surg Oncol 18:169–175

    Article  PubMed  CAS  Google Scholar 

  47. Cahill RA, Asakuma M, Trunzo J, Schomisch S, Wiese D, Saha S, Dallemagne B, Marks J, Marescaux J (2010) Intraperitoneal virtual biopsy by fibered optical coherence tomography (OCT) at natural orifice transluminal endoscopic surgery (NOTES). J Gastrointest Surg 14:732–738

    Article  PubMed  Google Scholar 

  48. Durduran T, Choe R, Yu G, Zhou C, Tchou JC, Czerniecki BJ, Yodh AG (2005) Diffuse optical measurement of blood flow in breast tumors. Opt Lett 30:2915–2917

    Article  PubMed  Google Scholar 

  49. Curran S, McMurdy JW, Carr SR, Muratore CS, O’Brien BM, Crawford GP, Luks FI (2010) Reflectance spectrometry for real-time hemoglobin determination of placental vessels during endoscopic laser surgery for twin-to-twin transfusion syndrome. J Pediatr Surg 45:59–64

    Article  PubMed  Google Scholar 

  50. Schols RM, Dunias P, Wieringa FP, Stassen LP (2012) Optical characterization of fresh human colonic specimen: an initial exploration of the possibilities in laparoscopic colorectal surgery. 20th International Congress of the EAES, 20–23 June 2012, Brussels, Belgium. http://www.eventure-online.com/eventure/publicAbstractView.do?id=185711&congressId=5608. Accessed 22 June 2012

  51. Akbari H, Kosugi Y (2009) Hyperspectral imaging: a new modality in surgery. In: Naik GR (ed) Recent advances in biomedical engineering. Intech—Open Acces Company, New York City, NY, pp 223–240

  52. Zuzak KJ, Naik SC, Alexandrakis G, Hawkins D, Behbehani K, Livingston EH (2007) Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery. Anal Chem 79:4709–4715

    Article  PubMed  CAS  Google Scholar 

  53. Zuzak KJ, Naik SC, Alexandrakis G, Hawkins D, Behbehani K, Livingston E (2008) Intraoperative bile duct visualization using near-infrared hyperspectral video imaging. Am J Surg 195:491–497

    Article  PubMed  Google Scholar 

  54. Best SL, Thapa A, Holzer MJ, Jackson N, Mir SA, Cadeddu JA, Zuzak KJ (2011) Minimal arterial in-flow protects renal oxygenation and function during porcine partial nephrectomy: confirmation by hyperspectral imaging. Urology 78:961–966

    Article  PubMed  Google Scholar 

  55. Tang MX, Elson DS, Li R, Dunsby C, Eckersley RJ (2010) Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging. Proc Inst Mech Eng H 224:291–306

    PubMed  Google Scholar 

  56. Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110:2783–2794

    Article  PubMed  CAS  Google Scholar 

  57. Wang LV (2003) Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography. Dis Markers 19:123–138

    PubMed  CAS  Google Scholar 

  58. Beziere N, Ntziachristos V (2011) Optoacoustic imaging: an emerging modality for the gastrointestinal tract. Gastroenterology 141:1979–1985

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. M. Poeze (trauma surgeon, Maastricht University Medical Center) for assistance with the setup for the systematic literature search.

Disclosures

Rutger M. Schols, Nicole D. Bouvy, Ronald M. van Dam, and Laurents P. S. Stassen have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger M. Schols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schols, R.M., Bouvy, N.D., van Dam, R.M. et al. Advanced intraoperative imaging methods for laparoscopic anatomy navigation: an overview. Surg Endosc 27, 1851–1859 (2013). https://doi.org/10.1007/s00464-012-2701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-012-2701-x

Keywords

Navigation