Skip to main content
Log in

Computing the \(L_1\) Geodesic Diameter and Center of a Polygonal Domain

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

For a polygonal domain with h holes and a total of n vertices, we present algorithms that compute the \(L_1\) geodesic diameter in \(O(n^2+h^4)\) time and the \(L_1\) geodesic center in \(O((n^4+n^2 h^4)\alpha (n))\) time, respectively, where \(\alpha (\cdot )\) denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in \(O(n^{7.73})\) or \(O(n^7(h+\log n))\) time, and compute the geodesic center in \(O(n^{11}\log n)\) time. Therefore, our algorithms are significantly faster than the algorithms for the Euclidean problems. Our algorithms are based on several interesting observations on \(L_1\) shortest paths in polygonal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahn, H.-K., Barba, L., Bose, P., De Carufel, J.-L., Korman, M., Oh, E.: A linear-time algorithm for the geodesic center of a simple polygon. In: Proceedings of the 31st Symposium on Computational Geometry, pp. 209–223 (2015)

  2. Aronov, B.: On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica 4(1–4), 109–140 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asano, T., Toussaint, G.: Computing the geodesic center of a simple polygon. Technical Report SOCS-85.32, McGill University, Montreal (1985)

  4. Bae, S.W., Korman, M., Okamoto, Y.: The geodesic diameter of polygonal domains. Discrete Comput. Geom. 50, 306–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bae, S.W., Korman, M., Okamoto, Y.: Computing the geodesic centers of a polygonal domain. In: Proceedings of the 26th Canadian Conference on Computational Geometry (2014). Journal version to appear in Computational Geometry: Theory and Applications. doi:10.1016/j.comgeo.2015.10.009

  6. Bae, S.W., Korman, M., Okamoto, Y., Wang, H.: Computing the \(L_1\) geodesic diameter and center of a simple polygon in linear time. Comput. Geom. 48, 495–505 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4), 475–481 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chazelle, B.: A theorem on polygon cutting with applications. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 339–349 (1982)

  9. Chen, D.Z., Wang, H.: A nearly optimal algorithm for finding \(L_1\) shortest paths among polygonal obstacles in the plane. In: Proceedings of the 19th European Symposium on Algorithms, pp. 481–492 (2011)

  10. Chen, D.Z., Wang, H.: Computing the visibility polygon of an island in a polygonal domain. In: Proceedings of the 39th International Colloquium on Automata, Languages and Programming, pp. 218–229 (2012). Journal version published online in Algorithmica, 2015

  11. Chen, D.Z., Wang, H.: \(L_1\) shortest path queries among polygonal obstacles in the plane. In: Proceedings of the 30th Symposium on Theoretical Aspects of Computer Science, pp. 293–304 (2013)

  12. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1–4), 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom. 4(2), 63–97 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hershberger, J., Suri, S.: Matrix searching with the shortest-path metric. SIAM J. Comput. 26(6), 1612–1634 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Inkulu, R., Kapoor, S.: Planar rectilinear shortest path computation using corridors. Comput. Geom. 42(9), 873–884 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kapoor, S., Maheshwari, S.N., Mitchell, J.S.B.: An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discrete Comput. Geom. 18(4), 377–383 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mitchell, J.S.B.: An optimal algorithm for shortest rectilinear paths among obstacles. In: The 1st Canadian Conference on Computational Geometry (1989)

  19. Mitchell, J.S.B.: \(L_1\) shortest paths among polygonal obstacles in the plane. Algorithmica 8(1), 55–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Papadopoulou, E., Lee, D.T.: A new approach for the geodesic Voronoi diagram of points in a simple polygon and other restricted polygonal domains. Algorithmica 20(4), 319–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(1), 611–626 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schuierer, S.: Computing the \(L_1\)-diameter and center of a simple rectilinear polygon. In: Proceedings of the International Conference on Computing and Information, pp. 214–229 (1994)

  23. Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci. 39, 220–235 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, H.: On the geodesic centers of polygonal domains. In: Proceedings of the 24th European Symposium on Algorithms, pp. 77:1–77:17 (2016)

Download references

Acknowledgements

Work by S.W. Bae was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A1A05006927), and by the Ministry of Education (2015R1D1A1A01057220). M. Korman is partially supported by JSPS/MEXT Grant-in-Aid for Scientific Research Grant Numbers 12H00855 and 15H02665 and also by The ELC project (MEXT KAKENHI) Grant Number 24106008. J. Mitchell acknowledges support from the US-Israel Binational Science Foundation (Grant 2010074) and the National Science Foundation (CCF-1018388, CCF-1526406). Y. Okamoto is partially supported by JST, CREST, Foundation of Innovative Algorithms for Big Data and JSPS/MEXT Grant-in-Aid for Scientific Research Grant Numbers JP24106005, JP24700008, JP24220003, and JP15K00009. V. Polishchuk is supported in part by Grant 2014-03476 from the Sweden’s innovation agency VINNOVA and the project UTM-OK from the Swedish Transport Administration Trafikverket. H. Wang was supported in part by the National Science Foundation (CCF-1317143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Wang.

Additional information

Editor in Charge: Kenneth Clarkson

A preliminary version of this paper appeared in the Proceedings of the 33rd International Symposium on Theoretical Aspects of Computer Science (STACS 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, S.W., Korman, M., Mitchell, J.S.B. et al. Computing the \(L_1\) Geodesic Diameter and Center of a Polygonal Domain. Discrete Comput Geom 57, 674–701 (2017). https://doi.org/10.1007/s00454-016-9841-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9841-z

Keywords

Mathematics Subject Classification

Navigation