Skip to main content
Log in

Encoding Toroidal Triangulations

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Poulalhon and Schaeffer introduced an elegant method to linearly encode a planar triangulation optimally. The method is based on performing a special depth-first search algorithm on a particular orientation of the triangulation: the minimal Schnyder wood. Recent progress toward generalizing Schnyder woods to higher genus enables us to generalize this method to the toroidal case. In the plane, the method leads to a bijection between planar triangulations and some particular trees. For the torus we obtain a similar bijection but with particular unicellular maps (maps with only one face).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Albar, B., Gonçalves, D., Knauer, K.: Orienting triangulations. J. Graph Theory 83(4), 392–405 (2016)

  2. Albenque, M., Poulalhon, D.: Generic method for bijections between blossoming trees and planar maps. Electron. J. Comb. 22(2), paper P2.38 (2015)

  3. Aleardi, L.C., Fusy, E., Lewiner, T.: Optimal encoding of triangular and quadrangular meshes with fixed topology. In: Proceedings of the 22nd Canadian Conference on Computational Geometry (CCCG 2010)

  4. Bernardi, O.: Bijective counting of tree-rooted maps and shuffles of parenthesis systems. Electron. J. Comb. 14, R9 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bernardi, O., Chapuy, G.: A bijection for covered maps, or a shortcut between Harer-Zagier’s and Jackson’s formulas. J Comb Theory A 118, 1718–1748 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound of planar graphs using triangulation. Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2003). Lecture Notes in Computer Science, vol. 2607, pp. 499–510. Springer, Berlin (2003)

  7. Chapuy, G.: A new combinatorial identity for unicellular maps, via a direct bijective approach. Adv. Appl. Math. 47, 874–893 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chapuy, G., Marcus, M., Schaeffer, G.: A bijection for rooted maps on orientable surfaces. SIAM J. Discrete Math. 23, 1587–1611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Fraysseix, H., de Mendez, O.P.: On topological aspects of orientations. Discrete Math. 229, 57–72 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Mendez, P.O.: Orientations bipolaires. PhD Thesis (1994)

  11. Duchi, E., Poulalhon, D., Schaeffer, G.: Uniform random sampling of simple branched coverings of the sphere by itself. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 294–304. Society for Industrial and Applied Mathematics, New York (2013)

  12. Felsner, S.: Lattice structures from planar graphs. Electron. J. Comb. 11, R15 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Fusy, E.: Combinatoire des cartes planaires et applications algorithmiques. PhD Thesis (2007). http://www.lix.polytechnique.fr/Labo/Eric.Fusy/Theses/these_eric_fusy.pdf

  14. Giblin, P.: Graphs. Surfaces and Homology. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  15. Gonçalves, D., Lévêque, B.: Toroidal maps: Schnyder woods, orthogonal surfaces and straight-line representations. Discrete Comput. Geom. 51, 67–131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gonçalves, D., Knauer, K., Lévêque, B.: Structure of Schnyder labelings on orientable surfaces (2015). arXiv:1501.05475

  17. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lévêque, B.: Generalization of Schnyder woods to orientable surfaces and applications. HDR Thesis (2016). http://pagesperso.g-scop.grenoble-inp.fr/~levequeb/Publications/HDR.pdf

  19. Mohar, B.: Straight-line representations of maps on the torus and other flat surfaces. Discrete Math. 155, 173–181 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. Algorithmica 46, 505–527 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Propp, J.: Lattice structure for orientations of graphs (1993). arXiv:math/0209005

  22. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ueckerdt, T.: Geometric representations of graphs with low polygonal complexity. PhD Thesis (2011). http://www.math.kit.edu/iag6/~ueckerdt/media/thesis-ueckerdt.pdf

Download references

Acknowledgments

We thank Luca Castelli Aleardi, Nicolas Bonichon, Eric Fusy and Frédéric Meunier for fruitful discussions about this work. This work was supported by the Grant EGOS ANR-12-JS02-002-01 and the project-team GALOIS supported by LabEx PERSYVAL-Lab ANR-11-LABX-0025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Lévêque.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Despré, V., Gonçalves, D. & Lévêque, B. Encoding Toroidal Triangulations. Discrete Comput Geom 57, 507–544 (2017). https://doi.org/10.1007/s00454-016-9832-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9832-0

Keywords

Mathematics Subject Classification

Navigation