Skip to main content
Log in

Quantum Jumps of Normal Polytopes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We introduce a partial order on the set of all normal polytopes in \(\mathbb R^d\). This poset \({{\mathsf {NPol}}}(d)\) is a natural discrete counterpart of the continuum of convex compact sets in \(\mathbb R^d\), ordered by inclusion, and exhibits a remarkably rich combinatorial structure. We derive various arithmetic bounds on elementary relations in \({{\mathsf {NPol}}}(d)\), called quantum jumps. The existence of extremal objects in \({{\mathsf {NPol}}}(d)\) is a challenge of number theoretical flavor, leading to interesting classes of normal polytopes: minimal, maximal, spherical. Minimal elements in \({{\mathsf {NPol}}}(5)\) have played a critical role in disproving various covering conjectures for normal polytopes in the 1990s. Here we report on the first examples of maximal elements in \({{\mathsf {NPol}}}(4)\) and \({{\mathsf {NPol}}}(5)\), found by a combination of the developed theory, random generation, and extensive computer search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beck, M., Delgado, J., Gubeladze, J., Michałek, M.: Very ample and Koszul segmental fibrations. J. Algebr. Comb. 42, 165–182 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruns, W.: On the integral Carathéodory property. Exp. Math. 16, 359–365 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruns, W., Gubeladze, J.: Normality and covering properties of affine semigroups. J. Reine Angew. Math. 510, 161–178 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Bruns, W., Gubeladze, J.: Rectangular simplicial semigroups. In: Commutative Algebra, Algebraic Geometry, and Computational Methods (Hanoi, 1996), pp. 201–213. Springer, Singapore (1999)

  5. Bruns, W., Gubeladze, J.: Polytopes, Rings, and \(K\)-theory. Springer Monographs in Mathematics. Springer, New York (2009)

    MATH  Google Scholar 

  6. Bruns, W., Gubeladze, J., Henk, M., Martin, A., Weismantel, R.: A counterexample to an integer analogue of Carathéodory’s theorem. J. Reine Angew. Math. 510, 179–185 (1999)

    MATH  MathSciNet  Google Scholar 

  7. Bruns, W., Ichim, B., Tim, R., Christof, S.: \({\sf Normaliz}\). http://www.math.uos.de/normaliz/

  8. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Carathéodory’s theorem. J. Comb. Theory, Ser. B 40(1), 63–70 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cox, D.A., Haase, C., Hibi, T., Higashitani, A.: Integer decomposition property of dilated polytopes. Electron. J. Comb. 21(4) (2014)

  10. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)

    MATH  Google Scholar 

  11. Gubeladze, J.: Normal polytopes. In: Proceedings of 22nd International Conference on Formal Power Series and Algebraic Combinatorics, San Francisco, pp. 4–8 (2010). http://math.sfsu.edu/fpsac/local_proceedings.pdf

  12. Gubeladze, J.: Convex normality of rational polytopes with long edges. Adv. Math. 230, 372–389 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Haase, C., Maclagan, D., Hibi, T.: Miniworkshop: Projective Normality of Smooth Toric Varieties (2007). Oberwolfach Reports, 39/2007

  14. Haase, C., Paffenholz, A., Piechnik, L., Santos, F.: Existence of unimodular triangulations—positive results. Preprint. http://arxiv.org/abs/1405.1687

  15. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)

    MATH  Google Scholar 

  16. Payne, S.: Lattice polytopes cut out by root systems and the Koszul property. Adv. Math. 220, 926–935 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sebö, A.: Hilbert bases, Carathéodory’s theorem and combinatorial optimization. In: Proceedings of the IPCO Conference, Waterloo, pp. 431–455 (1990)

  18. White, G.K.: Lattice tetrahedra. Can. J. Math. 16, 389–396 (1964)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank B. van Fraassen for his comments in the early stages of this project. We are grateful to anonymous reviewers for their helpful comments and spotting several inaccuracies. Supported by Grants DFG BR 688/22-1 (Bruns), NSF DMS-1301487 and GNSF DI/16/5-103/12 (Gubeladze), Polish National Science Center Grant No. 2012/05/D/ST1/01063 (Michałek)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Michałek.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruns, W., Gubeladze, J. & Michałek, M. Quantum Jumps of Normal Polytopes. Discrete Comput Geom 56, 181–215 (2016). https://doi.org/10.1007/s00454-016-9773-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9773-7

Keywords

Mathematics Subject Classification

Navigation