Skip to main content
Log in

Cayley Factorization and the Area Principle

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In Sturmfels and Whiteley (J Symb Comput 11(5):439–453, 1991), it is proven that any multihomogenous bracket polynomial with integer coefficients can be interpreted by a ruler construction when introducing simple non-degeneracy conditions. This problem is called (generalized) Cayley factorization. This allows for geometrically interpreting many projective invariant properties. We reprove the above statement in rank 3 giving a better bound on the size of the non-degeneracy conditions. The constant factor in the bound is essentially reduced from 105 to 9. The algorithm described is concise enough to be implemented on a computer. With this algorithm, interpreting a common condition for six points to lie on a common conic is very close to Pascal’s construction (see Apel, in: The geometry of brackets and the area principle, Dissertation, TU München, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For evaluating the formula given in the case \(m\ge 2\), use the second version of (1) within the equivalent formula .

References

  1. Apel, S.: Cayley factorization and the area principle. Papers presented at ADG 2012: The 9th International Workshop on Automated Deduction in Geometry, University of Edinburgh, 17–19 Sept 2012, pp. 33–41 (2012)

  2. Apel, S.: The geometry of brackets and the area principle. Dissertation, Fakultät für Mathematik, Technische Universität München (2014). http://mediatum.ub.tum.de/node?id=1175107

  3. Barnabei, M., Brini, A., Rota, G.-C.: On the exterior calculus of invariant theory. J. Algebra 96(1), 120–160 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berge, C.: Two theorems in graph theory. Proc. Natl Acad. Sci. USA 43(9), 842–844 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  5. Browne, J.: Grassmann Algebra: Foundations: Exploring Extended Vector Algebra with Mathematica. CreateSpace Independent Publishing Platform (2012)

  6. Carrell, J.B., Dieudonné, J.A.: Invariant Theory, Old and New. Academic Press, New York (1971)

    MATH  Google Scholar 

  7. Chan, W., Rota, G.-C., Stein, J.A.: The power of positive thinking. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 1–36. Springer, Dordrecht (1995)

    Chapter  Google Scholar 

  8. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Machine Proofs in Geometry: Automated Production of Readable Proofs for Geometry Theorems, vol. 6. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  9. Crapo, H.: Invariant-theoretic methods in scene analysis and structural mechanics. J. Symb. Comput. 11(5), 523–548 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Crapo, H.: Projective configurations: their invariants and homology. Proc. R. Ir. Acad. Sect. A 95A(Supplement), 35–58 (1995)

    MathSciNet  Google Scholar 

  11. Crapo, H., Rota, G.-C.: On the Foundations of Combinatorial Theory: Combinatorial Geometries. MIT Press, Cambridge (1970)

    MATH  Google Scholar 

  12. Crapo, H., Rota, G.-C.: The resolving bracket. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 197–222. Springer, Dordrecht (1995)

    Chapter  Google Scholar 

  13. Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures: a projective geometric introduction. Struct. Topol. 6, 43–82 (1982)

    MathSciNet  Google Scholar 

  14. Crelle, A.L.: Ueber einige Eigenschaften des ebenen geradlinigen Dreiecks rücksichtlich dreier durch die Winkel-Spitzen gezogenen geraden Linien, Berlin (1816)

  15. Diestel, R.: Graph Theory, 2nd edn. Springer, New York (2000)

    Google Scholar 

  16. Doubilet, P., Rota, G.-C., Stein, J.: On the foundations of combinatorial theory IX. Combinatorial methods in invariant theory. Stud. Appl. Math. 53(3), 185–216 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grosshans, F.D., Rota, G.-C., Stein, J.A.: Invariant Theory and Superalgebras. American Mathematical Society, Providence, RI (1987)

    Book  Google Scholar 

  18. Grünbaum, B., Shephard, G.C.: Ceva, Menelaus, and the area principle. Math. Mag. 68(4), 254–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grünbaum, B., Shephard, G.C.: Some new transversality properties. Geom. Dedicata 71(2), 179–208 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10(1), 26–30 (1935)

    Google Scholar 

  21. Hodge, W.V.D., Pedoe, D.: Methods of Algebraic Geometry, vol. 1. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  22. Huang, R.Q., Rota, G.-C., Stein, J.A.: Supersymmetric bracket algebra and invariant theory. In: Piacentini Cattaneo, G.M., Strickland, E. (eds.) Topics in Computational Algebra, pp. 193–246. Springer, Dordrecht (1990)

    Chapter  Google Scholar 

  23. Kraft, H., Procesi, C.: Classical Invariant Theory, a Primer. Lecture Notes, 125 pp., http://jones.math.unibas.ch/~kraft/Papers/KP-Primer.pdf (1996)

  24. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  25. Li, H., Wu, Y.: Automated short proof generation for projective geometric theorems with Cayley and bracket algebras: I. Incidence geometry. J. Symb. Comput. 36(5), 717–762 (2003)

    Article  MATH  Google Scholar 

  26. Li, H., Zhao, L., Chen, Y.: Polyhedral scene analysis combining parametric propagation with calotte analysis. In: Li, H., Olver, P.J., Sommer, G. (eds.) Computer Algebra and Geometric Algebra with Applications, pp. 383–402. Springer, Berlin (2005)

    Chapter  Google Scholar 

  27. Möbius, A.F.: Der barycentrische Calcul. Johann Ambrosius Barth, Berlin (1827)

    Google Scholar 

  28. Richter-Gebert, J.: Perspectives on Projective Geometry. Springer, New York (2011)

    Book  MATH  Google Scholar 

  29. Sturmfels, B.: Algorithms in Invariant Theory. Springer, New York (1993)

    Book  MATH  Google Scholar 

  30. Sturmfels, B., Whiteley, W.: On the synthetic factorization of projectively invariant polynomials. J. Symb. Comput. 11(5), 439–453 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tay, T.-S.: On the Cayley factorization of calotte conditions. Discrete Comput. Geom. 11(1), 97–109 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Weyl, H.: The Classical Groups: Their Invariants and Representations, vol. 1. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  33. White, N.L.: The bracket ring of a combinatorial geometry. I. Trans. Am. Math. Soc. 202, 79–95 (1975)

    Article  MATH  Google Scholar 

  34. White, N.L.: Cayley factorization and a straightening algorithm. In: Piacentini Cattaneo, G.M., Strickland, E. (eds.) Topics in Computational Algebra, pp. 163–184. Springer, Dordrecht (1990)

    Chapter  Google Scholar 

  35. White, N.L.: Multilinear Cayley factorization. J. Symb. Comput. 11(5), 421–438 (1991)

    Article  MATH  Google Scholar 

  36. White, N.L.: Grassmann–Cayley algebra and robotics. J. Intell. Robot. Syst. 11(1–2), 91–107 (1994)

    Article  MATH  Google Scholar 

  37. White, N.L.: A tutorial on Grassmann–Cayley algebra. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 93–106. Springer, Dordrecht (1995)

    Chapter  Google Scholar 

  38. White, N.L.: Grassmann–Cayley algebra and robotics applications. In: Bayro-Corrochano, E. (ed.) Handbook of Geometric Computing, pp. 629–656. Springer, Berlin (2005)

    Chapter  Google Scholar 

  39. White, N.L., McMillan, T.: Cayley factorization. In: Gianni, P. (ed.) Symbolic and Algebraic Computation, pp. 521–533. Springer, Berlin (1989)

    Chapter  Google Scholar 

  40. White, N.L., Whiteley, W.: The algebraic geometry of stresses in frameworks. SIAM J. Algebraic Discrete Methods 4(4), 481–511 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  41. Whiteley, W.: Invariant computations for analytic projective geometry. J. Symb. Comput. 11(5), 549–578 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  42. Whiteley, W.J.: Logic and invariant theory. Ph.D. Thesis, Department of Mathematics, Massachusetts Institute of Technology (1971)

  43. Wolfram Research, Inc.: Mathematica Edition: Version 9.0 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Apel.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apel, S. Cayley Factorization and the Area Principle. Discrete Comput Geom 55, 203–227 (2016). https://doi.org/10.1007/s00454-015-9738-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9738-2

Keywords

Mathematics Subject Classification

Navigation