Discrete & Computational Geometry

, Volume 44, Issue 1, pp 75-90

First online:

Vietoris–Rips Complexes of Planar Point Sets

  • Erin W. ChambersAffiliated withDepartment of Mathematics and Computer Science, St. Louis University Email author 
  • , Vin de SilvaAffiliated withDepartment of Mathematics, Pomona College
  • , Jeff EricksonAffiliated withDepartment of Computer Science, University of Illinois
  • , Robert GhristAffiliated withDepartments of Mathematics and Electrical/Systems Engineering, University of Pennsylvania

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Fix a finite set of points in Euclidean n-space \(\mathbb{E}^{n}\) , thought of as a point-cloud sampling of a certain domain \(D\subset\mathbb{E}^{n}\) . The Vietoris–Rips complex is a combinatorial simplicial complex based on proximity of neighbors that serves as an easily-computed but high-dimensional approximation to the homotopy type of D. There is a natural “shadow” projection map from the Vietoris–Rips complex to \(\mathbb{E}^{n}\) that has as its image a more accurate n-dimensional approximation to the homotopy type of D.

We demonstrate that this projection map is 1-connected for the planar case n=2. That is, for planar domains, the Vietoris–Rips complex accurately captures connectivity and fundamental group data. This implies that the fundamental group of a Vietoris–Rips complex for a planar point set is a free group. We show that, in contrast, introducing even a small amount of uncertainty in proximity detection leads to “quasi”-Vietoris–Rips complexes with nearly arbitrary fundamental groups. This topological noise can be mitigated by examining a pair of quasi-Vietoris–Rips complexes and using ideas from persistent topology. Finally, we show that the projection map does not preserve higher-order topological data for planar sets, nor does it preserve fundamental group data for point sets in dimension larger than three.


Topology Rips complex Quasi-Rips complex