Skip to main content
Log in

Spanners for Geodesic Graphs and Visibility Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Let \(\mathcal{P}\) be a set of n points inside a polygonal domain \(\mathcal{D}\). A polygonal domain with h holes (or obstacles) consists of h disjoint polygonal obstacles surrounded by a simple polygon which itself acts as an obstacle. We first study t-spanners for the set \(\mathcal{P}\) with respect to the geodesic distance function \(\pi \) where for any two points p and q, \(\pi (p,q)\) is equal to the Euclidean length of the shortest path from p to q that avoids the obstacles interiors. For a case where the polygonal domain is a simple polygon (i.e., \(h=0\)), we construct a (\(\sqrt{10}+\epsilon \))-spanner that has \(O(n \log ^2 n)\) edges. For a case where there are h holes, our construction gives a (\(5+\epsilon \))-spanner with the size of \(O(n\sqrt{h}\log ^2 n)\). Moreover, we study t-spanners for the visibility graph of \(\mathcal{P}\) (\(VG(\mathcal{P})\), for short) with respect to a hole-free polygonal domain \(\mathcal{D}\). The graph \(VG(\mathcal{P})\) is not necessarily a complete graph or even connected. In this case, we propose an algorithm that constructs a (\(3+\epsilon \))-spanner of size \(O(n^{4/3+\delta })\) for some \(\delta >0\). In addition, we show that there is a set \(\mathcal{P}\) of n points such that any \((3-\epsilon )\)-spanner of \(VG(\mathcal{P})\) must contain \(\varOmega (n^2)\) edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. Discrete Comput. Geom. 41(4), 556–582 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J., Smid, M.: Geometric spanners for weighted point sets. Algorithmica 61(1), 207–225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abam, M.A., Carmi, P., Farshi, M., Smid, M.: On the power of the semi-separated pair decomposition. Comput. Geom. 46(6), 631–639 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abam, M.A., Har-Peled, S.: New constructions of sspds and their applications. Comput. Geom. 45(5), 200–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agarwal, P.K., Sharir, M.: Applications of a new space-partitioning technique. Discrete Comput. Geom. 9(1), 11–38 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alon, N., Seymour, P., Thomas, R.: Planar separators. SIAM J. Discrete Math. 7(2), 184–193 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berg, M de., Cheong, O., Kreveld, M van., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer-Verlag (2008)

  9. Bose, P., Czyzowicz, J., Kranakis, E., Krizanc, D., Maheshwari, A.: Polygon cutting: Revisited. In Proceedings of Japanese Conference on Discrete and Computational Geometry, pp. 81–92 (1998)

  10. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1), 67–90 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kenneth, L., Clarkson, K.L., Edelsbrunner, H., Guibas, L.J., Sharir, M., Welzl, E.: Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5(1), 99–160 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Narasimhan, G., Smid, M.: Geometric spanner networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  14. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings of Annual ACM symposium on Theory of computing, pp. 281–290 (2004)

  15. Varadarajan, K R.: A divide-and-conquer algorithm for min-cost perfect matching in the plane. In Proceedings of Annual Symposium on Foundations of Computer Science, pp. 320–331. (1998)

Download references

Acknowledgements

The author would like to thank Pankaj Agarwal and Mark de Berg who initiated the problem and thank Marjan Adeli, Hamid Homapour and Pooya Zafar Asadollahpoor who partially worked on the problem and gave valuable suggestions and proved Lemma 1 and found the tight example in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Abam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abam, M.A. Spanners for Geodesic Graphs and Visibility Graphs. Algorithmica 80, 515–529 (2018). https://doi.org/10.1007/s00453-016-0268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0268-y

Keywords

Navigation