We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

2-Xor Revisited: Satisfiability and Probabilities of Functions

  • Published:
Algorithmica Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The problem 2-Xor-Sat asks for the probability that a random expression, built as a conjunction of clauses \(x \oplus y\), is satisfiable. We revisit this classical problem by giving an alternative, explicit expression of this probability. We then consider a refinement of it, namely the probability that a random expression computes a specific Boolean function. The answers to both problems involve a description of 2-Xor expressions as multigraphs and use classical methods of analytic combinatorics by expressing probabilities through coefficients of generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For the sake of brevity, in the sequel “(the set of) Boolean functions” is to be understood as either the set \({\mathcal {X}}_n\) or the set \( {\mathcal {X}}\), according to the context.

  2. Note that the relation \(\sim \) corresponds to an equivalence relation on the set of variables and therefore induces a partition on the set of variables. But as to the presence of negations, the formal structure is in fact a little bit richer than only a set with an equivalence relation.

  3. Here and in what follows, the constant denoted by K may vary and may depend on r—but it is always possible to get an explicit, though cumbersome, expression for it.

  4. It is also possible to extend the analysis to larger m, i.e. \(m\sim \alpha \cdot n\) with \(\alpha >\frac{g-1}{g}\), or \(m\gg n\).

References

  1. Andrews, G.E.: The theory of partitions. In: Encyclopedia of Mathematics and its Applications, vol. 2, Addison-Wesley Publishing Co., Reading (1976)

  2. Banderier, C., Flajolet, P., Schaeffer, G., Soria, M.: Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Struct. Algorithms 19(3–4), 194–246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bender, E.A., Canfield, E.R., McKay, B.D.: The asymptotic number of labeled connected graphs with a given number of vertices and edges. Random Struct. Algorithms 1(2), 127–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory. Oxford University Press, Oxford (1974)

    Google Scholar 

  5. Brodsky, A., Pippenger, N.: The Boolean functions computed by random Boolean formulas or how to grow the right function. Random Struct. Algorithms 27, 490–519 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited. Comb. Probab. Comput. 13(4–5), 475–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chauvin, B., Gardy, D., Mailler, C.: The growing tree distribution for Boolean functions. In: 8th SIAM Workshop on Analytic and Combinatorics (ANALCO), pp. 45–56 (2011)

  8. Comtet, L.: Advanced Combinatorics, enlarged edn. D. Reidel Publishing Co., Dordrecht (1974)

    Book  MATH  Google Scholar 

  9. Creignou, N., Daudé, H.: Satisfiability threshold for random XOR-CNF formulas. Discrete Appl. Math. 96–97, 41–53 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Creignou, N., Daudé, H.: Smooth and sharp thresholds for random \(k\)-XOR-CNF satisfiability. Theor. Inform. Appl. 37(2), 127–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Creignou, N., Daudé, H.: Coarse and sharp transitions for random generalized satisfiability problems. In: Drmota, M., Flajolet, P., Gardy, D., Gittenberger, B. (eds.) Mathematics and Computer Science III, Trends Mathematics, pp. 507–516. Birkhäuser, Basel (2004)

  12. Creignou, N., Daudé, H., Dubois, O.: Approximating the satisfiability threshold for random \(k\)-XOR-formulas. Comb. Probab. Comput. 12(2), 113–126 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Creignou, N., Daudé, H., Egly, U.: Phase transition for random quantified XOR-formulas. J. Artif. Intell. Res. 29, 1–18 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Daudé, H., Ravelomanana, V.: Random 2XorSat phase transition. Algorithmica 59(1), 48–65 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Panafieu, E.: Analytic Combinatorics of Graphs, Hypergraphs and Inhomogeneous Graphs. PhD thesis, Université Paris-Diderot, Sorbonne Paris-Cité (2014)

  16. de Panafieu, E., Gardy, D., Gittenberger, B., Kuba, M.: Probabilities of 2-xor functions. In: Pardo, A., Viola, A. (eds.) International Conference LATIN, vol 8392. Springer Lecture Notes in Computer Science (2014)

  17. de Panafieu, E., Ravelomanana, V.: Analytic description of the phase transition of inhomogeneous multigraphs. Eur. J. Comb. (2014). Accepted. Also available at http://arxiv.org/pdf/1409.8424.pdf

  18. Drmota, M.: Random trees. Springer, Vienna (2009)

    Book  MATH  Google Scholar 

  19. Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  20. Flajolet, P., Knuth, D.E., Pittel, B.: The first cycles in an evolving graph. Discrete Math. 75(1–3), 167–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flajolet, P., Salvy, B., Schaeffer, G.: Airy phenomena and analytic combinatorics of connected graphs. Electron. J. Comb. 11(1), R34 (30 pages) (2004)

  22. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  23. Fournier, H., Gardy, D., Genitrini, A., Gittenberger, B.: The fraction of large random trees representing a given Boolean function in implicational logic. Random Struct. Algorithms 40(3), 317–349 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fournier, H., Gardy, D., Genitrini, A., Zaionc, M.: Classical and intuitionistic logic are asymptotically identical. In: 16th Annual Conference on Computer Science Logic (EACSL), vol 4646 of Lecture Notes in Computer Science, pp. 177–193 (2007)

  25. Genitrini, A., Gittenberger, B., Kraus, V., Mailler, C.: Associative and Commutative Tree Representations for Boolean Functions. (2011). Submitted. Also available at http://arxiv.org/abs/1305.0651

  26. Genitrini, A., Gittenberger, B., Kraus, V., Mailler, C.: Probabilities of Boolean functions given by random implicational formulas. Electron. J. Comb. 19(2), P37 (20 pages) (electronic) (2012)

  27. Genitrini, A., Kozik, J., Zaionc, M.: Intuitionistic vs. classical tautologies, quantitative comparison. In: Types for Proofs and Programs, vol. 4941, pp. 100–109. Springer Lecture Notes in Computer Science (2008)

  28. Janson, S., Knuth, D., Łuczak, T., Pittel, B.: The birth of the giant component. Random Struct. Algorithms 4(3), 233–358 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kozik, J.: Subcritical pattern languages for And/Or trees. In: Fifth Colloquium on Mathematics and Computer Science, Blaubeuren, Germany, September (2008). DMTCS Proceedings

  30. Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean formulas. Random Struct. Algorithms 10, 337–351 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pittel, B., Wormald, N.C.: Counting connected graphs inside-out. J. Comb. Theory Ser. B 93(2), 127–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pittel, B., Yeum, J.-A.: How frequently is a system of 2-linear equations solvable? Electron. J. Comb. 17, R92 (50 pages) (2010)

  33. van der Hofstad, R., Spencer, J.: Counting connected graphs asymptotically. Eur. J. Comb. 26(8), 1294–1320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Woods, A.: On the probability of absolute truth for And/Or formulas. Bull. Symb. Logic 12(3), 523 (2005)

    Google Scholar 

  35. Wright, E.M.: The number of connected sparsely edged graphs. J. Graph Theory 1, 317–330 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wright, E.M.: The number of connected sparsely edged graphs III: asymptotic results. J. Graph Theory 4(4), 393–407 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zaionc, M.: On the asymptotic density of tautologies in logic of implication and negation. Rep. Math. Logic 39, 67–87 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Hervé Daudé and Vlady Ravelomanana for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danièle Gardy.

Additional information

Élie de Panafieu: Supported by the ANR Projects BOOLE (2009–13) and MAGNUM (2010–14), the P.H.C. Amadeus project Boolean expressions: compactification, satisfiability and distributions of functions (2013–14), the PEPS HYDrATA, the Austrian Science Fund (FWF) Grant F5004, and the Complex Networks team, Sorbonne University. Danièle Gardy: Part of the work of this author was done during a long-term visit at the Institute of Discrete Mathematics and Geometry of the TU Wien. Supported by the P.H.C. Amadeus projects Random logical trees and related structures (2010–11) and Boolean expressions: compactification, satisfiability and distributions of functions (2013–14), and by the ANR project BOOLE (2009–13). Bernhard Gittenberger: Supported by the FWF (Austrian Science Foundation), Special Research Program F50, Grant F5003-N15, and by the ÖAD, grant Amadée F01/2015. Markus Kuba: Supported by ÖAD, Grant Amadée F01/2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Panafieu, É., Gardy, D., Gittenberger, B. et al. 2-Xor Revisited: Satisfiability and Probabilities of Functions. Algorithmica 76, 1035–1076 (2016). https://doi.org/10.1007/s00453-016-0119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0119-x

Keywords

Navigation