Skip to main content
Log in

Line-Distortion, Bandwidth and Path-Length of a Graph

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

For a graph \(G=(V,E)\) the minimum line-distortion problem asks for the minimum k such that there is a mapping f of the vertices into points of the line such that for each pair of vertices xy the distance on the line \(|f(x) - f(y)|\) can be bounded by the term \(d_G(x, y)\le |f(x)-f(y)|\le k \, d_G(x, y)\), where \(d_G(x, y)\) is the distance in the graph. The minimum bandwidth problem minimizes the term \(\max _{uv\in E}|f(u)-f(v)|\), where f is a mapping of the vertices of G into the integers \(\{1, \ldots , n\}\). We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson–Seymour’s path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show:

  • there is a simple polynomial time algorithm that embeds an arbitrary unweighted input graph G into the line with distortion \(\mathcal{O}(k^2)\), where k is the minimum line-distortion of G;

  • if a graph G can be embedded into the line with distortion k, then G admits a Robertson–Seymour’s path-decomposition with bags of diameter at most k in G;

  • for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem;

  • there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph;

  • AT-free graphs and some intersection families of graphs have path-length at most 2;

  • for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Assman, S.F., Peck, G.W., Syslo, M.M., Zak, J.: The bandwidth of caterpillars with hairs of length 1 and 2. SIAM J. Algebraic Discrete Methods 2, 387–392 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem, Technical report TR98-014. University of Bonn (1997)

  3. Bădoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of general metrics into the line, In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005). Baltimore, MD, USA, ACM, pp. 225–233, 22–24 May 2005

  4. Bǎdoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi, R., Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces, In: Proceedings of the ACM/SIAM Symposium on Discrete Algorithms, (2005)

  5. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

  6. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discrete Math. 10, 399–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 292–302 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Diestel, R.: Graph Theory (Graduate Texts in Mathematics), 2nd edn. Springer, Berlin (2000)

    Google Scholar 

  10. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307, 208–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dragan, F.F., Köhler, E.: An Approximation Algorithm for the tree \(t\)-spanner problem on unweighted graphs via generalized chordal graphs, approximation, randomization, and combinatorial optimization. algorithms and techniques. In: Proceedings of the 14th International Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA, 17–19 Aug 2011. Lecture Notes in Computer Science 6845, Springer, pp. 171–183; Algorithmica 69 (2014), 884–905

  12. Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, Bandwidth and path-length of a graph. In Proceedings of 14th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2014), July 2-4 2014. Copenhagen, Denmark, Lecture Notes in Computer Science 8503, pp. 146–257 (2014)

  13. Dubey, Ch., Feige, U., Unger, W.: Hardness results for approximating the bandwidth. J. Comput. Syst. Sci. 77, 62–90 (2011)

  14. Feige, U.: Approximating the bandwidth via volume respecting embedding. J. Comput. Syst. Sci. 60, 510–539 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feige, U., Talwar, K.: Approximating the bandwidth of caterpillars. In: Proceedings of 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2005) and 9th International Workshop on Randomization and Computation (RANDOM 2005), Berkeley, CA, USA, Lecture Notes in Computer Science 3624, 2005, pp 62–73, 22–24 Aug 2005

  16. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A., Saurabh, S.: Distortion is fixed parameter tractable. ACM Trans. Comput. Theory 5, 16.1–16.20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fomin, F.V., Lokshtanov, D., Saurabh, S.: An exact algorithm for minimum distortion embedding. Theor. Comput. Sci. 412, 3530–3536 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and interval graphs. Can. J. Math. 16, 539–548 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golovach, P.A., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S.: Bandwidth on AT-free graphs. Theor. Comput. Sci. 412, 7001–7008 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  22. Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection graphs. Discrete Math. 43, 37–46 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gupta, A.: Improved bandwidth approximation for trees and chordal graphs. J. Algorithms 40, 24–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heggernes, P., Kratsch, D., Meister, D.: Bandwidth of bipartite permutation graphs in polynomial time. J. Discrete Algorithms 7, 533–544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heggernes, P., Meister, D.: Hardness and approximation of minimum distortion embeddings. Inf. Process. Lett. 110, 312–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heggernes, P., Meister, D., Proskurowski, A.: Computing minimum distortion embeddings into a path of bipartite permutation graphs and threshold graphs. Theor. Comput. Sci. 412, 1275–1297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science (FOCS 2001). IEEE, pp. 10–35

  28. Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces. In: Goodman J.E., O’Rourke J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 177–196. CRC press, New York (2004)

  29. Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM J. Discrete Math. 3, 373–375 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free graphs. J. Algorithms 32, 41–57 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kratsch, D., Spinrad, J.: Between \({\cal O}(n m)\), In: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms (SODA 2003). ACM, pp. 709–716

  32. Kratsch, D., Stewart, L.: Approximating bandwidth by mixing layouts of interval graphs. SIAM J. Discrete Math. 15, 435–449 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158(7), 820–827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ma, T.H., Spinrad, J.P.: On the two-chain subgraph cover and related problems. J. Algorithms 17, 251–268 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. McConnell, R.M., Spinrad, J.P.: Linear-time transitive orientation. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana 5–7, 19–25 (1997)

  36. Monien, B.: The bandwidth-minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algebraic Discrete Methods 7, 505–512 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Olariu, S.: An optimal greedy heuristic to color interval graphs. Inf. Process. Lett. 37, 65–80 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Proskurowski, A., Telle, J.A.: Classes of graphs with restricted interval models. Discrete Math. Theor. Comput. Sci. 3, 167–176 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Räcke, H.: Lecture notes at http://ttic.uchicago.edu/~harry/teaching/pdf/lecture15

  40. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35, 39–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shrestha, A.M.S., Tayu, S., Ueno, S.: Bandwidth of convex bipartite graphs and related graphs. Inf. Process. Lett. 112, 411–417 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sprague, A.P.: An \({\cal O}(n \log n)\) algorithm for bandwidth of interval graphs. SIAM J. Discrete Math. 7, 213–220 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to anonymous referees for many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feodor F. Dragan.

Additional information

Results of this paper were partially presented at the SWAT 2014 conference [12].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragan, F.F., Köhler, E. & Leitert, A. Line-Distortion, Bandwidth and Path-Length of a Graph. Algorithmica 77, 686–713 (2017). https://doi.org/10.1007/s00453-015-0094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0094-7

Keywords

Navigation