Algorithmica

, Volume 76, Issue 1, pp 225–258

Multi-sided Boundary Labeling

  • Philipp Kindermann
  • Benjamin Niedermann
  • Ignaz Rutter
  • Marcus Schaefer
  • André Schulz
  • Alexander Wolff
Article

DOI: 10.1007/s00453-015-0028-4

Cite this article as:
Kindermann, P., Niedermann, B., Rutter, I. et al. Algorithmica (2016) 76: 225. doi:10.1007/s00453-015-0028-4

Abstract

In the Boundary Labeling problem, we are given a set of n points, referred to as sites, inside an axis-parallel rectangle R, and a set of n pairwise disjoint rectangular labels that are attached to R from the outside. The task is to connect the sites to the labels by non-intersecting rectilinear paths, so-called leaders, with at most one bend. In this paper, we study the Multi-Sided Boundary Labeling problem, with labels lying on at least two sides of the enclosing rectangle. We present a polynomial-time algorithm that computes a crossing-free leader layout if one exists. So far, such an algorithm has only been known for the cases in which labels lie on one side or on two opposite sides of R (here a crossing-free solution always exists). The case where labels may lie on adjacent sides is more difficult. We present efficient algorithms for testing the existence of a crossing-free leader layout that labels all sites and also for maximizing the number of labeled sites in a crossing-free leader layout. For two-sided boundary labeling with adjacent sides, we further show how to minimize the total leader length in a crossing-free layout.

Keywords

Computational geometry Boundary labeling Dynamic program 

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Philipp Kindermann
    • 1
  • Benjamin Niedermann
    • 2
  • Ignaz Rutter
    • 2
  • Marcus Schaefer
    • 3
  • André Schulz
    • 4
  • Alexander Wolff
    • 1
  1. 1.Lehrstuhl für Informatik IUniversität WürzburgWürzburgGermany
  2. 2.Fakultät für InformatikKarlsruher Institut für Technologie (KIT)KarlsruheGermany
  3. 3.College of Computing and Digital MediaDePaul UniversityChicagoUSA
  4. 4.Institut für Mathematische Logik und GrundlagenforschungUniversität MünsterMünsterGermany