Skip to main content
Log in

Improved Approximation for Orienting Mixed Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

An instance of the maximum mixed graph orientation problem consists of a mixed graph and a collection of source-target vertex pairs. The objective is to orient the undirected edges of the graph so as to maximize the number of pairs that admit a directed source-target path. This problem has recently arisen in the study of biological networks, and it also has applications in communication networks. In this paper, we identify an interesting local-to-global orientation property. This property enables us to modify the best known algorithms for maximum mixed graph orientation and some of its special structured instances, due to Elberfeld et al. (Theor. Comput. Sci. 483:96–103, 2013), and obtain improved approximation ratios. We further proceed by developing an algorithm that achieves an even better approximation guarantee for the general setting of the problem. Finally, we study several well-motivated variants of this orientation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afek, Y., Bremler, A.: Self-stabilizing unidirectional network algorithms by power supply. Chic. J. Theor. Comput. Sci. 3 (1998). doi:10.4086/cjtcs.1998.003.

  2. Afek, Y., Gafni, E.: Distributed algorithms for unidirectional networks. SIAM J. Comput. 23(6), 1152–1178 (1994)

  3. Arkin, E.M., Hassin, R.: A note on orientations of mixed graphs. Discrete Appl. Math. 116(3), 271–278 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Becker, A.: Approximation algorithms for the loop cutset problem. In: Proceedings of the Tenth International Conference on Uncertainty in artificial intelligence, pp. 60–68. Morgan Kaufmann Publishers Inc., Burlington (1994)

  6. Blokh, D., Segev, D., Sharan, R.: Approximation algorithms and hardness results for shortest path based graph orientations. In: Combinatorial Pattern Matching, pp. 70–82. Springer, Berlin (2012)

  7. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs. Oper. Res. Lett. 22(4), 111–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dorn, B., Hüffner, F., Krüger, D., Niedermeier, R., Uhlmann, J.: Exploiting bounded signal flow for graph orientation based on cause-effect pairs. Algorithms Mol Biol 6(1), 1–12 (2011)

    Article  Google Scholar 

  10. Elberfeld, M., Bafna, V., Gamzu, I., Medvedovsky, A., Segev, D., Silverbush, D., Zwick, U., Sharan, R.: On the approximability of reachability-preserving network orientations. Internet Math. 7(4), 209–232 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Elberfeld, M., Segev, D., Davidson, C.R., Silverbush, D., Sharan, R.: Approximation algorithms for orienting mixed graphs. Theor. Comput. Sci. 483, 96–103 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feige, U., Goemans, M.: Approximating the value of two power proof systems, with applications to max 2sat and max dicut. In: Third Israel Symposium on the Theory of Computing and Systems, pp. 182–189. IEEE (1995)

  13. Fields, S.: High-throughput two-hybrid analysis. FEBS J. 272(21), 5391–5399 (2005)

    Article  Google Scholar 

  14. Frederickson, G.N., Johnson, D.B.: Generating and searching sets induced by networks. In: Automata, Languages and Programming, pp. 221–223. Springer, Berlin (1980)

  15. Gamzu, I., Medina, M.: Improved approximation for orienting mixed graphs. In: Structural Information and Communication Complexity, pp. 243–253. Springer, Berlin (2012)

  16. Gamzu, I., Segev, D.: A sublogarithmic approximation for highway and tollbooth pricing. In Automata, Languages and Programming, pp. 582–593. Springer, Berlin (2010)

  17. Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In: Algorithms in Bioinformatics, pp. 215–225. Springer, Berlin (2010)

  18. Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.-M., Cruciat, C.-M., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)

    Article  Google Scholar 

  19. Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reachability. Inf. Process. Lett. 63(5), 229–235 (1997)

    Article  MathSciNet  Google Scholar 

  20. Håstad, J.: Some optimal inapproximability results. J. ACM (JACM) 48(4), 798–859 (2001)

    Article  MATH  Google Scholar 

  21. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for max-cut and other 2-variable csps? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the max 2-sat and max di-cut problems. In: Integer Programming and Combinatorial Optimization, pp. 67–82. Springer, Berlin (2002)

  23. Marina, M.K., Das, S.R.: Routing performance in the presence of unidirectional links in multihop wireless networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Computing. Association for Computing Machinery, pp. 12–23 (2002)

  24. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An Algorithm for Orienting Graphs Based on Cause-Effect Pairs and its Applications to Orienting Protein Networks. Springer, Berlin (2008)

    Book  Google Scholar 

  25. Silverbush, D., Elberfeld, M., Sharan, R.: Optimally orienting physical networks. J. Comput. Biol. 18(11), 1437–1448 (2011)

    Article  MathSciNet  Google Scholar 

  26. Yeang, C.-H., Ideker, T., Jaakkola, T.: Physical network models. J. Comput. Biol. 11(2–3), 243–262 (2004)

    Article  Google Scholar 

  27. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3, 103–128 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Moti Medina was partially funded by the Israeli Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moti Medina.

Additional information

Preliminary version appeared in the proceedings of SIROCCO 2012 [15].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamzu, I., Medina, M. Improved Approximation for Orienting Mixed Graphs. Algorithmica 74, 49–64 (2016). https://doi.org/10.1007/s00453-014-9932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9932-2

Keywords

Navigation