Skip to main content
Log in

Shortest Path Problems on a Polyhedral Surface

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We describe algorithms to compute edge sequences, a shortest path map, and the Fréchet distance for a convex polyhedral surface. Distances on the surface are measured by the length of a Euclidean shortest path. We describe how the star unfolding changes as a source point slides continuously along an edge of the convex polyhedral surface. We describe alternative algorithms to the edge sequence algorithm of Agarwal et al. (SIAM J. Comput. 26(6):1689–1713, 1997) for a convex polyhedral surface. Our approach uses persistent trees, star unfoldings, and kinetic Voronoi diagrams. We also show that the core of the star unfolding can overlap itself when the polyhedral surface is non-convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. If multiple shortest paths exist from s to v j , then any of these shortest paths can be used to represent π(s,v j ) as in [13].

  2. The core has also been referred to as the kernel or the antarctic in [1, 13]. Note that neither the star unfolding nor its core are necessarily star-shaped [1].

  3. In [1], this dual graph is referred to as the pasting tree.

  4. This construction is based on a near-linear function λ s+2(k) that is defined by the length of a Davenport-Schinzel sequence. Here, s is a constant that represents the maximum number of times that a pair of shapes can intersect, and n is the total number of shapes.

  5. Queries in O(logn) time are also possible by [23] but at the cost of essentially squaring both the time and space preprocessing bounds.

References

  1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applications. SIAM J. Comput. 26(6), 1689–1713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Sharir, M.: Davenport–Schinzel Sequences and Their Geometric Applications. In: Handbook of Computational Geometry, pp. 1–47. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  3. Albers, G., Mitchell, J.S.B., Guibas, L.J., Roos, T.: Voronoi diagrams of moving points. Int. J. Comput. Geom. Appl. 8, 365–380 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aleksandrov, L., Djidjev, H., Huo, G., Maheshwari, A., Nussbaum, D., Sack, J.-R.: Approximate shortest path queries on weighted polyhedral surfaces. In: 31st Mathematical Foundations of Computer Science (MFCS), vol. 4162, pp. 98–109 (2006)

    Google Scholar 

  5. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. J. ACM 52(1), 925–953 (2005)

    Article  MathSciNet  Google Scholar 

  6. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for curves, revisited. In: 14th Annual European Symposium on Algorithms (ESA), pp. 52–63 (2006)

    Google Scholar 

  8. Aronov, B., O’Rourke, J.: Nonoverlap of the star unfolding. Discrete Comput. Geom. 8(1), 219–250 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  10. Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet distance between simple polygons in polynomial time. In: 22nd Symposium on Computational Geometry (SoCG), pp. 80–87 (2006)

    Google Scholar 

  11. Chambers, E.W., de Verdiére, É. Colin, Erickson, J., Lazard, S., Lazarus, F., Thite, S.: Walking your dog in the woods in polynomial time. In: 24th Symposium on Computational Geometry (SoCG), pp. 101–109 (2008)

    Google Scholar 

  12. Chandru, V., Hariharan, R., Krishnakumar, N.M.: Short-cuts on star, source and planar unfoldings. In: Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 174–185 (2004)

    Google Scholar 

  13. Chen, J., Han, Y.: Shortest paths on a polyhedron. Int. J. Comput. Geom. Appl. 6(2), 127–144 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chiang, Y., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the plane. In: 10th Symposium on Discrete Algorithms (SODA), pp. 215–224 (1999)

    Google Scholar 

  15. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 34(1), 200–208 (1987)

    Article  Google Scholar 

  16. Cook, A.F. IV, Wenk, C.: Geodesic Fréchet distance inside a simple polygon. In: 25th Symposium on Theoretical Aspects of Computer Science (STACS) (2008)

    Google Scholar 

  17. Cook, A.F. IV, Wenk, C.: Geodesic Fréchet distance with polygonal obstacles. Technical report cs-tr-2008-010, University of Texas at San Antonio (2008)

  18. Cook, A.F. IV, Wenk, C.: Shortest path problems on a polyhedral surface. Technical report cs-tr-2009-001, University of Texas at San Antonio (2009)

  19. Cook, A.F. IV, Wenk, C.: Shortest path problems on a polyhedral surface. In: Dagstuhl Seminar Proceedings 09111: Computational Geometry (2009)

    Google Scholar 

  20. Cook, A.F. IV, Wenk, C.: Shortest path problems on a polyhedral surface In: 25th European Workshop on Computational Geometry (EuroCG) (2009)

    Google Scholar 

  21. Cook, A.F. IV, Wenk, C.: Shortest path problems on a polyhedral surface. In: Algorithms and Data Structures Symposium, pp. 156–167 (2009)

    Chapter  Google Scholar 

  22. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  23. Devillers, O., Golin, M., Kedem, K., Schirra, S.: Queries on Voronoi diagrams of moving points. Comput. Geom. Theory Appl. 6(5), 315–327 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Efrat, A., Guibas, L.J., Har-Peled, S., Mitchell, J.S.B., Murali, T.M.: New similarity measures between polylines with applications to morphing and polygon sweeping. Discrete Comput. Geom. 28(4), 535–569 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi diagrams of moving points in the plane. Graph-Theor. Concepts Comput. Sci. 570, 113–125 (1992)

    MathSciNet  Google Scholar 

  27. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hwang, Y.-H., Chang, R.-C., Tu, H.-Y.: Finding all shortest path edge sequences on a convex polyhedron. In: Workshop on Algorithms & Data Structures (WADS) (1989)

    Google Scholar 

  29. Maheshwari, A., Yi, J.: On computing Fréchet distance of two paths on a convex polyhedron. In: 21st European Workshop on Computational Geometry (EuroCG) (2005)

    Google Scholar 

  30. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry (1998)

    Google Scholar 

  31. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16(4), 647–668 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mount, D.M.: The number of shortest paths on the surface of a polyhedron. SIAM J. Comput. 19(4), 593–611 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial tessellations: concepts and applications of Voronoi diagrams. Probability and Statistics, 2nd edn. p. 671 pages. Wiley, New York (2000)

    Book  Google Scholar 

  34. Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Technical report ecg-tr-241108-01 (May 2005)

  35. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Commun. ACM 29(7), 669–679 (1986)

    Article  MathSciNet  Google Scholar 

  36. Schevon, C., O’Rourke, J.: The number of maximal edge sequences on a convex polytope. In: 26th Allerton Conference on Communication, Control, and Computing, pp. 49–57 (1988)

    Google Scholar 

  37. Schreiber, Y., Sharir, M.: An optimal-time algorithm for shortest paths on a convex polytope in three dimensions. Discret. Comput. Geom. 39(1–3), 500–579 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. van Oostrum, R., Veltkamp, R.C.: Parametric search made practical. In: 18th Symposium on Computational Geometry (SoCG), pp. 1–9 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atlas F. Cook IV.

Additional information

This work has been supported by the National Science Foundation grant NSF CAREER CCF-0643597.

Previous versions of this work have appeared in [1821].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, A.F., Wenk, C. Shortest Path Problems on a Polyhedral Surface. Algorithmica 69, 58–77 (2014). https://doi.org/10.1007/s00453-012-9723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9723-6

Keywords

Navigation