Skip to main content
Log in

Quantum lithography: A non-computing application of quantum information

  • Reguläre Beiträge
  • Published:
Informatik - Forschung und Entwicklung

Abstract

Quantum information theory holds the promise of revolutionizing technologies other than computing and communications. In this article we show how quantum entanglement can be harnessed to beat the Rayleigh diffraction limit of conventional optical lithography, and to permit nano-devices to be fabricated at a scale arbitrarily shorter than the wavelength used. Given the relative ease of performing optical lithography compared with other schemes, and the relative costs associated in migrating the lithography industry to each new fabrication technology, exploiting quantum entanglement to extend the useful life of optical lithography could be economically attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheats JR, Smith BW (eds) (1998) Microlithography Science and Technology, 1st Edition. Marcel Dekker Inc, New York

    Google Scholar 

  2. Wong AK-K (2001) Resolution Enhancement Techniques in Optical Lithography. SPIE – International Society for Optical Engineers, Tutorial Texts in Optical Engineering, TT 47, ISBN: 0-8194-3995-9

  3. Litt LC, Roman B, Conley W, Cobb J (2004) Equipment Options on the Road to the 22 nm Node: Decisions, Decisions, Fut Fab Intl 17 http://www.future-fab.com/documents.asp?d_ID=2613

  4. Brueck S (2004) Optical Litho: There Are No Fundamental Limits. In: Opto and Laser Europe. See http://www.optics.org/articles/ole/9/6/2/1

  5. See for example http://www.nanotechweb.org/articles/news/3/7/16/1 (2004)

  6. fi fi Kanellos M (2003) A Fab Construction Job, CfifiNETNews.com. Full text available at http://news.com.com/A+fab+construction+job/2100-1001_3-981060.html

  7. Hutcheson GD, Hutcheson JD (1996) Technology and Economics in the Semiconductor Industry. Scientific American, pp 54–62

  8. Boto A, Kok P, Abrams D, Braunstein S, Williams CP, Dowling JP (2000) Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit. Phys Rev Lett 85(13):2733–2736

    Article  Google Scholar 

  9. Kok P, Boto A, Abrams D, Williams CP, Braunstein S, Dowling JP (2001) Quantum Interferometric Optical Lithography: Towards Arbitrary Two-Dimensional Patterns. Phys Rev A 63:063407

    Article  Google Scholar 

  10. D’Angelo M, Chekhova MV, Shih Y (2001) Two-Photon Diffraction and Quantum Lithography. Phys Rev Lett 87:013602

    Article  Google Scholar 

  11. Bouwmeester D (2004) High NOON for Photons. Nature 429(6988):139

    Article  Google Scholar 

  12. Walther P, Pan J, Aspelmeyer M, Ursin R, Gasparoni S, Zeilinger A (2004) DeBroglie Wavelength of a Non-Local Four-Photon State. Nature 429(6988):158

    Article  Google Scholar 

  13. Mitchell MW, Lundeen JS, Steinberg AM (2004) Super-Resolving Phase Measurements with a Multiphoton Entangled State. Nature 429(6988):139

    Article  Google Scholar 

  14. Williams CP, Dowling JP (2001) Lithography Using Quantum Entangled Particles. U.S. Patent 6,252,665, June 26

  15. Williams CP, Dowling JP, della Rossa G (2002) Lithography System Using Quantum Entangled Photons. U.S. Patent 6,480,283,November 12, 2002

  16. Williams CP, Dowling (2003) JP Lithography Using Quantum Entangled Particles. U.S. Patent 6,583,881, June 24th 2003

  17. Williams CP, Dowling JP, della Rossa G (2003) Lithography Using Quantum Entangled Particles. U.S. Patent 6,630,290, October 7th 2003

  18. Brueck SRJ, Zaidi SH, Chen X, Zhang Z (1998) Interferometric Lithography: From Periodic Arrays to Arbitrary Patterns. Microelectron Eng 41–42:145–148

    Article  Google Scholar 

  19. Lord Rayleigh (1879) Philos Mag 8:261

    Google Scholar 

  20. Born M, Wolf E (1980) Principles of Optics, Sec. 7.6.3., 6th ed. Pergamon Press, New York

    Google Scholar 

  21. Witzgall G, Vrijen R, Yablonovitch E (1998) Single Shot Two-Photon Exposure of a Commercial Photoresist for the Production of Three-Dimensional Structures. Opt Lett 23:22

    Google Scholar 

  22. Ullal CK, Maldovan M, Wohlgemuth M, White CA, Yang S, Thomas EL (2003) 3D Periodic Biocontinuous Structures Through Interference Lithography: A Level Set Approach. J Opt Soc Am A 20:948

    Google Scholar 

  23. Helstrom CW (1976) Quantum Detection and Estimation Theory. Academic Press, New York

    Google Scholar 

  24. Hong CK, Ou ZY, Mandel L (1987) Measurement of Sub-picosecond Time Intervals Between Two Photons by Interference. Phys Rev Lett 59(18):2044–2046

    Article  Google Scholar 

  25. Milburn GJ (1989) Quantum Optical Fredkin Gate. Phys Rev Lett 62(18):2124–2127

    Article  Google Scholar 

  26. D’Ariano GM, Maccone L, Paris MGA, Sacchi MF (2000) Optical Fock State Synthesizer. Phys Rev A 61:053817

    Article  Google Scholar 

  27. Boyd RW (1999) J Mod Opt 46:367

    Article  Google Scholar 

  28. Fiurásek J (2002) Conditional Generation of N-photon Entangled States of Light. Phys Rev A 65:053818

    Article  Google Scholar 

  29. Zou X, Pahlke K, Mathis W (2001) Generation of Entangled States of Two Travelling Modes for Fixed Number of Photons. quant-ph/0110149

  30. Kok P, Lee H, Dowling JP (2002) Creation of Large-Photon Number Path Entanglement Conditioned on Photodetection. Phys Rev A 65:052104

    Article  Google Scholar 

  31. Gauß CF (1801) Disquisitiones Arithmeticae. Gerhard Fleischer, Leipzig

    MATH  Google Scholar 

  32. Gingrich RM, Kok P, Lee H, Vatan F, Dowling JP (2003) An All Linear Optical Quantum Memory Based on Quantum Error Correction. Phys Rev Lett 91:217901

    Article  Google Scholar 

  33. See URL: http://www.microchem.com/products/su_eight.htm

  34. See URLs http://chandra.harvard.edu/about/science_instruments3.html, http://space.mit.edu/CSR/hetg_info.html, http://nano-web.mit.edu/annual-report01/24.html

  35. Farhoud M, Hwang MM, Smith HI, Bae JM, Youcef-Toumi K, Ross CA (1998) Fabrication of Large Area Nanostructured Magnets by Interferometric Lithography. IEEE Trans Magn 34:1087–1089

    Article  Google Scholar 

  36. Hwang M, Savas TA, Farhoud M, Smith HI, Ross CA (1999) Magnetic Properties of 100-200nm Period Nanomagnet Arrays. Mat Res Soc, Symposium J, Patterned Magnetic Structures and Magnetoelectronics

  37. Vavassori P, Metlushko V, Osgood III RM, Grimsditch M, Welp U, Crabtree G (1999) Large Area Submicron-Scale Periodic Magnetic Arrays. Mat Res Soc, Symposium J, Patterned Magnetic Structures and Magnetoelectronics

  38. van Rijn CJM, Nijdam W, Kuiper S, Veldhuis GJ, van Wolferen H, Elwenspoek M (1999) Microsieves made with laser interference lithography for micro-filtration applications. J Micromech Microeng 9:170–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, C., Kok, P., Lee, H. et al. Quantum lithography: A non-computing application of quantum information . Informatik Forsch. Entw. 21, 73–82 (2006). https://doi.org/10.1007/s00450-006-0017-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-006-0017-6

Keywords

Navigation