Skip to main content
Log in

A one dimensional moving bed biofilm reactor model for nitrification of municipal wastewaters

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work presents a one-dimensional model of a moving bed bioreactor (MBBR) process designed for the removal of nitrogen from raw wastewaters. A comprehensive experimental strategy was deployed at a semi-industrial pilot-scale plant fed with a municipal wastewater operated at 10–12 °C, and surface loading rates of 1–2 g filtered COD/m2 d and 0.4–0.55 g NH4-N/m2 d. Data were collected on influent/effluent composition, and on measurement of key variables or parameters (biofilm mass and maximal thickness, thickness of the limit liquid layer, maximal nitrification rate, oxygen mass transfer coefficient). Based on time-course variations in these variables, the MBBR model was calibrated at two time-scales and magnitudes of dynamic conditions, i.e., short-term (4 days) calibration under dynamic conditions and long-term (33 days) calibration, and for three types of carriers. A set of parameters suitable for the conditions was proposed, and the calibrated parameter set is able to simulate the time-course change of nitrogen forms in the effluent of the MBBR tanks, under the tested operated conditions. Parameters linked to diffusion had a strong influence on how robustly the model is able to accurately reproduce time-course changes in effluent quality. Then the model was used to optimize the operations of MBBR layout. It was shown that the main optimization track consists of the limitation of the aeration supply without changing the overall performance of the process. Further work would investigate the influence of the hydrodynamic conditions onto the thickness of the limit liquid layer and the “apparent” diffusion coefficient in the biofilm parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ministère_de_l’Écologie (2011) Plan d’action Assainissement des eaux usées urbaines 2012-2018 pour une politique d’assainissement contribuant aux objectifs de qualité des milieux aquatiques. http://www.assainissement.developpement-durable.gouv.fr/documents/2011_09_27_Plan_daction_assainissement_version_finale.pdf. Accessed 5 May 2017

  2. Lariyah MS, Mohiyaden HA, Hayder G, Hussein A, Basri H, Sabri AF, Noh MN (2016) Application of moving bed biofilm reactor (MBBR) and integrated fixed activated sludge (IFAS) for biological river water purification system: a short review. IOP Conf Ser Earth Environ Sci 32(1):16

    Google Scholar 

  3. Barwal A, Chaudhary R (2014) To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review. Rev Environ Sci Biotechnol 13:285–299

    Article  CAS  Google Scholar 

  4. Ødegaard H, Rusten B, Westrum T (1994) A new moving bed biofilm reactor—applications and results. Wat Sci Technol 29(10–11):157–165

    Google Scholar 

  5. Nolasco DA, Boltz JP (2013) Wastewater treatment process modeling: chapter 3, in MOP 31, 2nd Ed. WEF Press, Alexandria, Virginia

    Google Scholar 

  6. Yang Q, He Q, Husham IT (2012) Review on moving bed biofilm process. Pakistan J Nutr 11(9):804–811

    Article  Google Scholar 

  7. Horn H, Lackner S (2014) Modeling of biofilm systems: a review. Adv Biochem Eng Biotechnol 146:53–76

    Google Scholar 

  8. Tierra G, Pavissich JP, Nerenberg R, Xu Z, Alber MS (2015) Multicomponent model of deformation and detachment of a biofilm under fluid flow. J R Soc Interface 12(106):20150045

    Article  Google Scholar 

  9. Wanner O, Eberl H, Morgenroth E, Nogueria D, Picioreanu C, Rittman B, van Loosdrecht M (2006) Mathematical modeling of biofilms, in Sci Tech Rep no 18. IWA, London, p 179

    Google Scholar 

  10. Boltz JP, Morgenroth E, Brockmann D, Bott C, Gellner WJ, Vanrolleghem PA (2011) Systematic evaluation of biofilm models for engineering practice: components and critical assumptions. Wat Sci Technol 64(4):930–944

    Article  CAS  Google Scholar 

  11. Albizuri J, Grau P, Christensson M, Larrea L (2014) Validating the colloid model to optimise the design and operation of both moving-bed biofilm reactor and integrated fixed-film activated sludge systems. Wat Sci Technol 69(7):1552–1557

    Article  CAS  Google Scholar 

  12. Albizuri J, van Loosdrecht MCM, Larrea L (2009) Extended mixed-culture biofilms (MCB) model to describe integrated fixed film/activated sludge (IFAS) process behaviour. Wat Sci Technol 60(12):3233–3324

    Article  CAS  Google Scholar 

  13. Li B, Qiu Y, Zhang C, Chen L, Shi H (2016) Understanding biofilm diffusion profiles and microbial activities to optimize integrated fixed-film activated sludge process. Chem Eng J 302:269–277

    Article  CAS  Google Scholar 

  14. Mannina G, Trapani DD, Viviani G, Ødegaard H (2011) Modelling and dynamic simulation of hybrid moving bed biofilm reactors: model concepts and application to a pilot plant. Biochem Eng J 56(1–2):23–36

    Article  CAS  Google Scholar 

  15. Maurer M, Fux C, Lange D, Siegrist H (1999) Modelling denitrification in a moving bed of porous carriers from a low-loaded wastewater treatment plant. Wat Sci Technol 39(7):251–259

    Article  CAS  Google Scholar 

  16. Plattes M, Henry E, Schosseler PM, Weidenhaupt A (2006) Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater. Biochem Eng J 32(2):61–68

    Article  CAS  Google Scholar 

  17. Mannina G, Di Trapani D, Torregrossa M, Viviani G (2007) Modelling of hybrid moving bed biofilm reactors: a pilot plant experiment. Wat Sci Technol 55(8–9):237–246

    Article  CAS  Google Scholar 

  18. Brockmann D, Boltz JP, Morgenroth E, Daigger GT, Henze M, Rittmann B, Sørensen KH, Takács I, Vanrolleghem PA, van Loosdrecht M (2013) Applying a framework for calibrating a biofilm-reactor model: a full-scale moving-bed biofilm reactor active in nitrification. In: 9th International Conference on Biofilm Reactors, IWA publishing LU, Editor 2013: Issy-Les-Moulineaux (France), 28–31st May 2013, p 8

  19. Kaldate A, Goel R, Schraa O, Snowling S, Stinson B, Murthy S (2010) Model calibration for a post-denitrification moving bed biofilm reactor. WEFTEC, New Orleans

    Google Scholar 

  20. Neilands R, Larsson S, Neilands R, Gjunsburgs B, Bernats M, Strade E (2013) High strength wastewater treatment process simulation. In: Civil Engineering ‘13: 4th International Scientific Conference 2013. Latvia, Jelgava

  21. Hydromantis, GPS-X 6.0 Technical reference, 2006, Hydromantis, p 343

  22. Barry U, Choubert JM, Canler JP, Héduit A, Robin L, Lessard P (2012) A calibration protocol of a one-dimensional moving bed bioreactor (MBBR) dynamic model for nitrogen removal. Wat Sci Technol 65(7):1172–1178

    Article  CAS  Google Scholar 

  23. Henze M, Grady CPL Jr, Gujer W (1987) A general model for single-sludge wastewater treatment systems. Wat Res 21(5):505–515

    Article  CAS  Google Scholar 

  24. Spengel DB, Dzombak DA (1992) Biokinetic modeling and scale-up considerations for rotating biological contactors. Wat Environ Res 64(3):223–235

    Article  CAS  Google Scholar 

  25. Lin YH (2008) Kinetics of nitrogen and carbon removal in a moving-fixed bed biofilm reactor. Appl Math Mod 32(11):2360–2377

    Article  Google Scholar 

  26. Boltz JP, Johnson BR, Daigger GT, Sandino J, Elenter D (2009) Modeling integrated fixed-film activated sludge and moving-bed biofilm reactor systems. II: evaluation. Water Environ Res 81(6):576–586

    Article  CAS  Google Scholar 

  27. Roeleveld PJ, van Loosdrecht MCM (2002) Experience with guidelines for wastewater characterisation in the Netherlands. Wat Sci Technol 45(6):77–87

    CAS  Google Scholar 

  28. Melcer H, Dold PL, Jones CB, Takacs I, Stensel DH, Wilson AW, Sun P, Bury S (2003) Methods for wastewater characterization in activated sludge modelling. 2003: Water Environment Research Foundation, Alexandria, VA, USA,p 575

  29. Amiel C, Gillot S, Roustan L, Héduit A (2002) Toward a method for measuring oxygen transfer in biofilters. Wat Qual Res J Can 37(4):729–743

    CAS  Google Scholar 

  30. Frössling N (1938) Über die verdunstung fallender Tropfen [On the evaporation of falling drops]. Gerlands beiträge zur geophysik 52:170–215

    Google Scholar 

  31. Rowe PN, Claxton KT, Lewis JB (1965) Heat and mass transfer from a single sphere in an extensive flowing fluid. Trans Inst Chem Eng 43:14–31

    Google Scholar 

  32. Henze M (1992) Characterisation of wastewater for modelling of activated sludge processes. Wat Sci Technol 25(6):1–15

    CAS  Google Scholar 

  33. Pasztor I, Thury P, Pulai J (2009) Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment. Int J Environ Sci Technol 6(1):51–56

    Article  CAS  Google Scholar 

  34. Vigne E, Choubert JM, Canler JP, Héduit A, Sorensen K, Lessard P (2010) A biofiltration model for tertiary nitrification of municipal wastewaters. Water Res 44(15):4399–4410

    Article  CAS  Google Scholar 

  35. Gillot S, Héduit A (2008) Prediction of alpha factor values for fine pore aeration systems. Wat Sci Technol 57(8):1265–1269

    Article  CAS  Google Scholar 

  36. Jing JY, Feng J, Li WY (2009) Carrier effects on oxygen mass transfer behavior in a moving-bed biofilm reactor. Asia-Pac J Chem Eng 4(5):618–623

    Article  CAS  Google Scholar 

  37. Khlebnikov A, Samb F, Péringer P (1998) Use of a dynamic gassing-out method for activity and oxygen diffusion coefficient estimation in biofilms. Wat Sci Technol 37(4–5):171–175

    Article  CAS  Google Scholar 

  38. Choubert JM, Stricker AE, Marquot A, Racault Y, Gillot S, Héduit A (2009) Updated activated sludge model no1 parameter values for improved prediction of nitrogen removal in activated sludge processes: validation at 13 full-scale plants. Wat Environ Res 81(9):858–865

    Article  CAS  Google Scholar 

  39. Odegaard H, Rusten B, Siljuden J (1999) The development of the moving bed biofilm process-from idea to commercial product. Eur Wat Manage 2(3):36–43

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of Irstea (France), NSERC (Canada), Vinci Environnement (France) and Grand-Lyon Métropole. The authors thank Loïc Richard, Myriam Arhror, Corinne Brosse, Clément Crétollier, Olivier Garcia and Jean-Marc Perret for providing technical and analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Choubert.

Ethics declarations

Conflict of interest

This work does not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barry, U., Choubert, JM., Canler, JP. et al. A one dimensional moving bed biofilm reactor model for nitrification of municipal wastewaters. Bioprocess Biosyst Eng 40, 1141–1149 (2017). https://doi.org/10.1007/s00449-017-1775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1775-1

Keywords

Navigation