Skip to main content
Log in

Modeling of carbon dioxide mass transfer behavior in attached cultivation photobioreactor using the analysis of the pH profiles

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The CO2 mass transfer model associated with growth kinetics of microalgal biofilm in attached cultivation photobioreactor was developed and verified by using the analysis of pH profiles which were in equilibrium with inorganic carbon components concentrations (CO2, H2CO3, HCO3 and CO3 2−) in medium. Model simulation results showed that the model well presented the biofilm growth process. The overall volumetric mass transfer coefficient of CO2 was more influenced by CO2 concentration in aerated gas but less by gas aeration rate and medium circulation rate. Other bio-kinetic parameters related with the microalgal biofilm such as CO2 diffusion coefficient in biofilm, Monod maximum utilization rate of CO2, lag phase duration of biofilm and half-saturation CO2 concentration in the biofilm were independent on operational conditions. The pH profiles provided a way to monitor the variations of inorganic carbon concentrations of medium and to regulate the cultivation of attached microalgal biofilm by CO2 supplement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  2. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  3. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    Article  CAS  Google Scholar 

  4. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  5. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162

    Article  CAS  Google Scholar 

  6. Liu TZ, Wang JF, Hu Q, Cheng PF, Ji B, Liu JL, Chen Y, Zhang W, Chen XL, Chen L, Gao LL, Ji CL, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  Google Scholar 

  7. Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423

    Article  CAS  Google Scholar 

  8. OzkanA A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    Article  Google Scholar 

  9. Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99(17):8137–8142

    Article  CAS  Google Scholar 

  10. Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45(18):5925–5933

    Article  CAS  Google Scholar 

  11. Naumann T, Cebi Z, Podola B, Melkonian M (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25(5):1413–1420

    Article  CAS  Google Scholar 

  12. Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160

    Article  CAS  Google Scholar 

  13. Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wijffels RH (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111(12):2436–2445

    Article  CAS  Google Scholar 

  14. Li SW, Luo SJ, Guo RB (2013) Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour Technol 136:267–272

    Article  CAS  Google Scholar 

  15. Rubio FC, Fernandez F, Perez J, Camacho FG, Grima EM (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86

    Article  CAS  Google Scholar 

  16. Contreras EM (2007) Carbon dioxide stripping in bubbled columns. Ind Eng Chem Res 46(19):6332–6337

    Article  CAS  Google Scholar 

  17. Valdes FJ, Hernandez MR, Catala L, Marcilla A (2012) Estimation of CO2 stripping/CO2 microalgae consumption ratios in a bubble column photobioreactor using the analysis of the pH profiles. Application to Nannochloropsis oculata microalgae culture. Bioresour Technol 119:1–6

    Article  CAS  Google Scholar 

  18. Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Langenhove HV (2010) A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol 85(3):387–394

    Article  CAS  Google Scholar 

  19. Lin YH, Leu JY, Lan CR, Lin PH, Chang FL (2003) Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photoreactor. Chemosphere 53(7):779–787

    Article  CAS  Google Scholar 

  20. Hill GA (2006) Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe. Ind Eng Chem Res 45(16):5796–5800

    Article  CAS  Google Scholar 

  21. Kordac M, Linek V (2008) Dynamic measurement of carbon dioxide volumetric mass transfer coefficient in a well-mixed reactor using a pH probe: analysis of the salt and supersaturation effects. Ind Eng Chem Res 47(4):1310–1317

    Article  CAS  Google Scholar 

  22. Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae:(bio-) chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30(6):1405–1424

    Article  Google Scholar 

  23. Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35(2):171–205

    CAS  Google Scholar 

  24. Liehr SK, Wayland Eheart J, Suidan MT (1988) A modeling study of the effect of pH on carbon limited algal biofilms. Water Res 22(8):1033–1041

    Article  CAS  Google Scholar 

  25. Rittmann BE, McCarty PL (1980) Model of steady-state-biofilm kinetics. Biotechnol Bioeng 22(11):2343–2357

    Article  CAS  Google Scholar 

  26. Moser A (1988) Bioprocess technology. Springer, New York, pp 225–226

    Book  Google Scholar 

  27. Ji B, Zhang W, Zhang N, Wang J, Lutzu GA, Liu T (2014) Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp. Bioprocess Biosyst Eng 37(7):1–7

    Article  Google Scholar 

  28. Ferreira BS, Fernandes HL, Reis A, Mateus M (1998) Microporous hollow fibres for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. J Chem Technol Biotechnol 71(1):61–70

    Article  CAS  Google Scholar 

  29. Grima EM, Pérez JAS, Camacho FÍG, Medina AR (1993) Gas–liquid transfer of atmospheric CO2 in microalgal cultures. J Chem Technol Biotechnol 56(4):329–337

    Article  Google Scholar 

  30. Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules. Biotechnol Prog 17(2):265–272

    Article  CAS  Google Scholar 

  31. Mudliar S, Banerjee S, Vaidya A, Devotta S (2008) Steady state model for evaluation of external and internal mass transfer effects in an immobilized biofilm. Bioresour Technol 99(9):3468–3474

    Article  CAS  Google Scholar 

  32. Fouad M, Bhargava R (2005) A simplified model for the steady-state biofilm-activated sludge reactor. J Environ Manag 74(3):245–253

    Article  CAS  Google Scholar 

  33. Sabarunisha Begum S, Radha KV (2014) Effect of gas–liquid mass transfer coefficient and liquid–solid mass transfer resistance on phenol biodegradation in three phase inverse fluidized bed biofilm reactor. J Environ Chem Eng 2(4):2321–2326

    Article  CAS  Google Scholar 

  34. Jiang YL, Zhang W, Wang JF, Chen Y, Shen SH, Liu TZ (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364

    Article  CAS  Google Scholar 

  35. Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RL, Inomata H (2009) Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnol Prog 25(2):492–498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National key research and development program-China (2016YFB0601002), the National Natural Science Foundation of China (41276144) and Coal-based Key Sci-Tech Project of Shanxi Province (No. FT-2014-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Wang, J., Li, R. et al. Modeling of carbon dioxide mass transfer behavior in attached cultivation photobioreactor using the analysis of the pH profiles. Bioprocess Biosyst Eng 40, 1079–1090 (2017). https://doi.org/10.1007/s00449-017-1770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1770-6

Keywords

Navigation