Skip to main content
Log in

Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Much research has been conducted about different types of fermentation at high temperature, but only a few of them have studied cell viability changes during high-temperature fermentation. In this study, Acetobacter senegalensis, a thermo-tolerant strain, was used for gluconic acid production at 38 °C. The influences of different carbon sources and physicochemical conditions on cell viability and the resuscitation of viable but nonculturable (VBNC) cells formed during fermentation were studied. Based on the obtained results, A. senegalensis could oxidize 95 g l− 1 glucose to gluconate at 38 °C (pH 5.5, yield 83%). However, despite the availability of carbon and nitrogen sources, the specific rates of glucose consumption (qs) and gluconate production (qp) reduced progressively. Interestingly, gradual qs and qp reduction coincided with gradual decrease in cellular dehydrogenase activity, cell envelope integrity, and cell culturability as well as with the formation of VBNC cells. Entry of cells into VBNC state during stationary phase partly stemmed from high fermentation temperature and long-term oxidation of glucose, because just about 48% of VBNC cells formed during stationary phase were resuscitated by supplementing the culture medium with an alternative favorite carbon source (low concentration of ethanol) and/or reducing incubation temperature to 30 °C. This indicates that ethanol, as a favorable carbon source, supports the repair of stressed cells. Since formation of VBNC cells is often inevitable during high-temperature fermentation, using an alternative carbon source together with changing physicochemical conditions may enable the resuscitation of VBNC cells and their use for several production cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AAB:

Acetic acid bacteria

GA:

Gluconic acid

VBNC:

Viable but nonculturable

rx (g l− 1 h− 1):

Cell growth rate

rs (g l− 1 h− 1):

Substrate (glucose) consumption rate

rp (g l− 1 h− 1):

Gluconic acid production rate

μmax (h− 1):

Maximum specific growth rate

qs (h− 1):

Specific rate of substrate (glucose) consumption

qp (h− 1):

Specific rate of gluconic acid production

qs max (h− 1):

Maximum specific rate of substrate (glucose) consumption

qp max (h− 1):

Maximum specific rate of gluconic acid production

References

  1. Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75(4):713–722

    Article  CAS  Google Scholar 

  2. Ajala EO, Ajala MA, Ogunniyi DS, Sunmonu MO (2016) Kinetics of gluconic acid production and cell growth in a batch bioreactor by Aspergillus niger using breadfruit hydrolysate. J Food Process Eng. doi:10.1111/jfpe.12461

    Google Scholar 

  3. Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic Acid: properties, applications and microbial production. Food Technol Biotechnol 44 (2):185–195

  4. Anastassiadis S, Aivasidis A, Wandrey C (2003) Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans. Appl Microbiol Biotechnol 61(2):110–117

    Article  CAS  Google Scholar 

  5. Anastassiadis S, Rehm H-J (2006) Continuous gluconic acid production by Aureobasidium pullulans with and without biomass retention. Electron. J Biotechnol 910 (10

  6. Saichana I, Moonmangmee D, Adachi O, Matsushita K, Toyama H (2009) Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Appl Environ Microbiol 75(13):4240–4247

    Article  CAS  Google Scholar 

  7. Piemonte V, De Falco M, Basile A (2013) Sustainable development strategies: an overview. Sustainable development in chemical engineering: innovative technologies. John Wiley & Sons, UK

    Book  Google Scholar 

  8. Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?. Appl Microbiol Biotechnol 85(4):861–867. doi:10.1007/s00253-009-2248-5

    Article  CAS  Google Scholar 

  9. Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2 (1):1–19

  10. Eiadpum A, Limtong S, Phisalaphong M (2012) High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae. J Biosci Bioeng 114(3):325–329

    Article  CAS  Google Scholar 

  11. Moreno AD, Ibarra D, Ballesteros I, González A, Ballesteros M (2013) Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol 135(0):239–245

    Article  CAS  Google Scholar 

  12. Ndoye B, Cleenwerck I, Engelbeen K, Dubois-Dauphin R, Guiro AT, Van Trappen S, Willems A, Thonart P (2007) Acetobacter senegalensis sp. nov., a thermotolerant acetic acid bacterium isolated in Senegal (sub-Saharan Africa) from mango fruit (Mangifera indica L.). Int J Syst Evol Microbiol 57(Pt 7):1576–1581

    Article  CAS  Google Scholar 

  13. Shafiei R, Delvigne F, Babanezhad M, Thonart P (2013) Evaluation of viability and growth of Acetobacter senegalensis under different stress conditions. Int J Food Microbiol 163(2–3):204–213

    Article  CAS  Google Scholar 

  14. Ndoye B, Lebecque S, Destain J, Guiro AT, Thonart P (2007) A new pilot plant scale acetifier designed for vinegar production in Sub-Saharan Africa. Process Biochem 42(11):1561–1565

    Article  CAS  Google Scholar 

  15. Shafiei R, Delvigne F, Thonart P (2013) Flow-cytometric assessment of damages to Acetobacter senegalensis during freeze-drying process and storage. Acetic Acid Bacteria 2(s1):e10

  16. Mounir M, Shafiei R, Zarmehrkhorshid R, Hamouda A, Ismaili Alaoui M, Thonart P (2016) Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor. J Biosci Bioeng 121(2):166–171

    Article  CAS  Google Scholar 

  17. Torija MJ, Rozes N, Poblet M, Guillamon JM, Mas A (2003) Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int J Food Microbiol 80(1):47–53

    Article  CAS  Google Scholar 

  18. Kuřec M, Baszczyňski M, Lehnert R, Mota A, Teixeira JA, Brányik T (2009) Flow cytometry for age assessment of a yeast population and its application in beer fermentations. J Inst Brew 115(3):253–258

    Article  Google Scholar 

  19. Müller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21(1):100–113

    Article  Google Scholar 

  20. Seiskari P, Linko Y-Y, Linko P (1985) Continuous production of gluconic acid by immobilized Gluconobacter oxydans cell bioreactor. Applied Microbiol Biotechnol 21(6):356–360

    Article  CAS  Google Scholar 

  21. Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71(5):2239–2243

    Article  CAS  Google Scholar 

  22. Song H, Jang SH, Park JM, Lee SY (2008) Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens. Biochem Eng J 40(1):107–115

    Article  CAS  Google Scholar 

  23. Henson MA (2003) Dynamic modeling of microbial cell populations. Curr Opin Biotechnol 14(5):460–467

    Article  CAS  Google Scholar 

  24. Schaule G, Flemming HC, Ridgway HF (1993) Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl Environ Microbiol 59(11):3850–3857

    CAS  Google Scholar 

  25. Davey HM (2011) Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77(16):5571–5576

    Article  CAS  Google Scholar 

  26. Hara S, Isoda R, Tahvanainen T, Hashidoko Y (2012) Trace amounts of Furan-2-Carboxylic Acids determine the quality of solid agar plates for bacterial culture. PloS one 7(7):e41142

    Article  CAS  Google Scholar 

  27. Nowakowska J, Oliver JD (2013) Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol Ecol 84(1):213–222

    Article  CAS  Google Scholar 

  28. Su CP, Jane WN, Wong HC (2013) Changes of ultrastructure and stress tolerance of Vibrio parahaemolyticus upon entering viable but nonculturable state. Int J Food Microbiol 160(3):360–366

    Article  Google Scholar 

  29. Serpaggi V, Remize F, Recorbet G, Gaudot-Dumas E, Sequeira-Le Grand A, Alexandre H (2012) Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol 30(2):438–447

    Article  CAS  Google Scholar 

  30. Quiros C, Herrero M, Garcia LA, Diaz M (2009) Quantitative approach to determining the contribution of viable but nonculturable subpopulations to malolactic fermentation processes. Appl Environ Microbiol 75(9):2977–2981

    Article  CAS  Google Scholar 

  31. Oliver JD (2000) The viable but nonculturable state and cellular resuscitation. Microbial biosystems: new frontiers. Atlantic Canada Society for Microbial Ecology. Halifax, Canada

  32. Vattakaven T, Bond P, Bradley G, Munn CB (2006) Differential effects of temperature and starvation on induction of the viable-but-nonculturable state in the coral pathogens Vibrio shiloi and Vibrio tasmaniensis. Appl Environ Microbiol 72(10):6508–6513

    Article  CAS  Google Scholar 

  33. Oliver JD (2005) The viable but nonculturable state in bacteria. Journal of microbiology (Seoul, Korea) 43 Spec No:93–100

  34. Whitesides MD, Oliver JD (1997) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl Environ Microbiol 63(3):1002–1005

    CAS  Google Scholar 

  35. Budu-Amoako E, Toora S, Ablett RF, Smith J (1992) Evaluation of the ability of primary selective enrichment to resuscitate heat-injured and freeze-injured Listeria monocytogenes cells. Appl Environ Microbiol 58(9):3177–3179

    CAS  Google Scholar 

  36. Morishige Y, Fujimori K, Amano F (2013) Differential resuscitative effect of pyruvate and its analogues on VBNC (Viable But Non-Culturable) Salmonella. Microbes Environ 28 (2):180–186

  37. Busch SV, Donnelly CW (1992) Development of a repair-enrichment broth for resuscitation of heat-injured Listeria monocytogenes and Listeria innocua. Appl Environ Microbiol 58(1):14–20

    CAS  Google Scholar 

  38. Sievers M, Swings J (2005) Acetobacteriaceae. In: Garitt GM (ed) BERGEY’S manual of systematic bacteriology, vol 2 (Part C). Second edn. Springer, USA, pp 41–80

    Google Scholar 

  39. Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16(1–2):69–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sandra Ormenese and Mr. Raafat Stephan for their help, and scientific and technical advice in the flow-cytometric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raziyeh Zarmehrkhorshid.

Additional information

R. Shafiei and R. Zarmehrkhorshid contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei, R., Zarmehrkhorshid, R., Mounir, M. et al. Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation. Bioprocess Biosyst Eng 40, 769–780 (2017). https://doi.org/10.1007/s00449-017-1742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1742-x

Keywords

Navigation