Skip to main content
Log in

Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present work, we have investigated biochemical thermo-kinetic stability of lipases immobilized on a biocompatible polymeric material. Immobilization of lipase Candida rugosa (CRL) was carried out on biocompatible blend of poly vinyl alcohol (PVA) and chitosan (CHY) support via entrapment and glutardehyde (Glu) cross-linking method to produce PVA:CHY:CRL and PVA:CHY:Glu:CRL as robust biocatalyst. These immobilized lipases were characterized by various physico-biochemical characterization techniques. Later on, thermal and solvent stability of polymer immobilized lipase was determined in term of half-life time (t 0.5), D values, enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°) of deactivation at different temperatures and in various solvents. The thermodynamic deactivation stability trend was found as: cross-linked lipase CRL > entrapped lipase CRL > free lipase CRL. Moreover, kinetic parameters, such as K m, V max, and catalytic efficiency, were also determined to understand the kinetic features. The polymer immobilized enzyme was reused to investigate the economic viability of the developed biocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PVA:

Polyvinyl alcohol

CHY:

Chitosan

PVA:CHY:

Control matrix

PVA:CHY:Glu:

Activated glutaraldehyde matrix

PVA:CHY:CRL:

Entrapped lipase

PVA:CHY:CRL:Glu:

Immobilized cross-linked lipase

t 0.5 :

Half life time

K d :

Deactivation rate constant

D-value:

Decimal reduction value

ΔH°:

Enthalpy of deactivation

ΔG°:

Gibb’s free energy of deactivation

ΔS°:

Entropy of deactivation

Ea:

Activation energy

References

  1. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    Article  CAS  Google Scholar 

  2. Gao W, Xiu F, Guang-Xian Z, Zhou C (2015) Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem Eng J 99:67–84

    Article  CAS  Google Scholar 

  3. Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436

    Article  CAS  Google Scholar 

  4. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and application of lipases, Biotech Adv 19:627–962

    Article  CAS  Google Scholar 

  5. Mateo C, Palomo JM, fernandez-Lorente G, Fernandez-Lafuente R, Guisan JM (2007) Improvement of enzyme activity, stability and selectivity via immobilization technique. Enzyme Microb Technol 4:1451–1463

    Article  Google Scholar 

  6. Sheldon R, Pelt SV (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  7. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569

    Article  CAS  Google Scholar 

  8. May SW (1997) New applications for biocatalysts. Curr Opin Biotechnol 8:181–186

    Article  CAS  Google Scholar 

  9. Pronk W, Boswinkel G, Riet KV (1992) Parameters influencing hydrolysis kinetics of lipase in a hydrophilic membrane bioreactor. Enzyme Microb Technol 14:214–220

    Article  CAS  Google Scholar 

  10. Elnashar M, Mostafa H, Morsy NA, Awad G (2013) Biocatalysts: isolation, identification, and immobilization of thermally stable lipase onto three novel biopolymeric supports. Ind Eng Chem Res 52:14760–14767

    Article  CAS  Google Scholar 

  11. Živković LTI, Živković LS, Babić BM, Kokunešoski MJ, Jokić BM, Karadžić IM (2015) Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochem Eng J 93:73–83

    Article  Google Scholar 

  12. Mendes AA, Oliveira P, Vélez A, Giordano RC, Castro HF (2012) Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. Int J Biol Macromol 50:503–511

    Article  CAS  Google Scholar 

  13. Macquarrie DJ, Hardy JJE (2005) Applications of Functionalized Chitosan in Catalysis. Ind Eng Chem Res 44:8499–8520

    Article  CAS  Google Scholar 

  14. Cantone S, Ferrario V, Corici L et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262–6276

    Article  CAS  Google Scholar 

  15. Badgujar KC, Bhanage BM (2014) Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: kinetic modelling and chain length effect study. Process Biochem 49:1304–1313

    Article  CAS  Google Scholar 

  16. Badgujar KC, Dhake KP, Bhanage BM (2013) Immobilization of Candida cylindracea lipase on poly lactic acid, polyvinyl alcohol and chitosan based polymer film: Characterization, activity, stability and its application for N-acylation reactions. Process Biochem 48:1335–1347

    Article  CAS  Google Scholar 

  17. Gummadi SN (2003) What Is the role of thermodynamics on protein stability? Biotechnol Bioprocess Eng 8:9–18

    Article  CAS  Google Scholar 

  18. Srinivas R, Panda T (1999) Enhancing the feasibility of many biotechnological processes through enzyme deactivation studies. Bioprocess Eng 21:363–369

    Article  CAS  Google Scholar 

  19. Pencreacha G, Barattia JC (2001) Comparison of hydrolytic activity in water and heptane for thirty-two commercial lipase preparations. Enzyme Microb Technol 28:473–479

    Article  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. Biol Chem 193:265–275

    CAS  Google Scholar 

  21. Ren G, Yu H (2011) Oriented adsorptive immobilization of esterase BioH based on protein structure analysis. Biochem Eng J 53:286–291

    Article  CAS  Google Scholar 

  22. Jochems P, Satyawali P, Diels L, Dejonghe W, (2011) Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem 13:1609–1623

    Article  CAS  Google Scholar 

  23. Dave R, Madamwar M (2006) Esterification in organic solvents by lipase immobilized in polymer of PVA-alginate-boric acid. Process Biochem 41:951–956

    Article  CAS  Google Scholar 

  24. Reetz MT (1997) Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv Mater 9:943–954

    Article  CAS  Google Scholar 

  25. Kosaka PM, Kawano Y, Seoud OA, Petri DF (2007) Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters. Langmuir 23:12167–12173

    Article  CAS  Google Scholar 

  26. Hung TC, Giridhar R, Chiou S, Wu W, (2003) Binary immobilization of Candida rugosa lipase on chitosan. J Mol Catal B Enzym 26:69–78

    Article  CAS  Google Scholar 

  27. Nagar S, Mittal A, Kumar D, Kumar L, Gupta VK (2012) Immobilization of xylanase on glutaraldehyde activated aluminum oxide pellets for increasing digestibility of poultry feed. Process Biochem 47:1402–1410

    Article  CAS  Google Scholar 

  28. Pal A, Khanum F (2011) Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochem 46:1315–1322

    Article  CAS  Google Scholar 

  29. Wang Y et al (2010) Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. J Mol Catal B Enzym 67:45–51

  30. Wehtje E, Adlercreutz P (1997) Lipases have similar water activity profiles in different reactions. Biotechnol Lett 19:537–540

    Article  CAS  Google Scholar 

  31. Erdemir S, Yilmaz MJ, (2009) Synthesis of calix[n]arene-based silica polymers for lipase immobilization. J Mol Catal B Enzym 58:29–35

    Article  CAS  Google Scholar 

  32. Chen J, Lin W (2003) Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis. Enzyme Microb Technol 32:801–811

    Article  CAS  Google Scholar 

  33. Martinek K (1978) The principles of enzyme stabilization. III. The effect of the length of intra-molecular cross-linkages on thermostability of enzymes. Biochim et Biophys Acta (BBA) Enzymol 522:277–283

    Article  Google Scholar 

  34. Kumara D et al (2013) Covalent immobilization of organic solvent tolerant lipase on aluminum oxide pellets and its potential application in esterification reaction. J Mol Catal B Enzym 87:51–61

    Article  Google Scholar 

  35. Madan B, Mishra P (2014) Directed evolution of Bacillus licheniformis lipase for improvement of thermostability. Biochem Eng J l 91:276–282

    Article  CAS  Google Scholar 

  36. Gouda MD et al (2003) Thermal inactivation of glucose oxidase. J Biol Chem 278:24324–24333

    Article  CAS  Google Scholar 

  37. Marin E et al (2003) Effect of heat treatment on bovine lactoperoxidase activity in skim milk: kinetic and thermodynamic analysis. J Food Sci 68:89–93

    Article  CAS  Google Scholar 

  38. Bhatti HN et al (2005) Effect of copper ions on thermal stability of glucoamylase from Fusarium sp. Int J Agric Biol 7:585

    CAS  Google Scholar 

  39. Anema SG, McKenna ABJ (1996) Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. Agric Food Chem 44:422–428

    Article  CAS  Google Scholar 

  40. Tanaka A, Hoshino E (2002) Calcium-binding parameter of Bacillus amyloliquefaciens amylase determined by inactivation kinetics. Biochem J 364:635–639

    Article  CAS  Google Scholar 

  41. Naidu GSN, Panda T (2003) Studies on pH and thermal deactivation of pectolytic enzymes from Aspergillus niger. Biochem Eng J 16:57–67

    Article  CAS  Google Scholar 

  42. Galan CG, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve performance. Adv Synth Catal 353:2885–2904

    Article  Google Scholar 

  43. Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633

    Article  Google Scholar 

  44. Derewenda U, Swenson L, Wei Y, Green R et al. (1994) Conformational lability of lipases observed in the absence of an oil–water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus. J Lipid Res 35:524

    CAS  Google Scholar 

  45. Nelson DL (2008) Lehninger’s Principles of Biochemistry, 5th edn.; ISBN 10:071677108X

  46. Li R, Jiang L, Ye L, Lu J, Yu H (2014) Oriented covalent immobilization of esterase BioH on hydrophilic-modified Fe3O4 nanoparticles. Biotechnol Appl Biochem 61:603–610

    Article  CAS  Google Scholar 

  47. Kim MH., An S, Won K, Kim HJ, Lee SH (2012) Entrapment of enzymes intocellulose-biopolymer composite hydro gel beads using biocompatible ionic liquid. J Mol Catal B Enzym 75:68–72

    Article  CAS  Google Scholar 

  48. Cui C, Tao Y, Li L, Chen BT, Tan (2013) Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam. J Mol Catal B Enzym 91:59–66

    Article  CAS  Google Scholar 

  49. Ye P, Jiang J, Xu Z (2007) Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface. Colloids Surf B 60:62–67

    Article  CAS  Google Scholar 

  50. Ye P, Xu Z, Che A, Seta PJ (2005) Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials 26:6394–6403

    Article  CAS  Google Scholar 

  51. Silva W, Teixeir L, Carvalho A, Mendes A, Castro HF (2014) Influence of feedstock source on the biocatalyst stability. J Ind Eng Chem 20:881–886

    Article  CAS  Google Scholar 

  52. Palomo JM, Fernández-Lorente G, Mateo C, R.L. S.C. Ortiz, Fernandez-Lafuente R, Guisan JM (2006) Purification, immobilization, hyperactivation, and stabilization of lipases by selective adsorption on hydrophobic supports. Methods Biotechnol 22:143–152

    Article  CAS  Google Scholar 

  53. Fernandez-Lorente G, Fernandez-Lafuente R (2008) Interfacially activated lipases against hydrophobic supports: effect of the support nature on the biocatalytic properties. Process Biochem 43:1061–1067

    Article  CAS  Google Scholar 

  54. Yadav GD, Trivedi AH (2003) Kinetic modelling of immobilized lipase catalyzed transesterification of n-octanol with vinyl butyrate in non-aqueous media. Enzyme Microb Technol 32:783–789

    Article  CAS  Google Scholar 

  55. Kuo C, Chen G, Chen C, Liu Y, Shiehd C (2014) Kinetics and optimization of lipase catalyzed synthesis of rose fragrance 2- phenylethyl acetate through transesterification. Process Biochem 49:437–444

    Article  CAS  Google Scholar 

  56. Wang S, Wu J, Xu G et al (2012) Lipase-catalyzed remote kinetic resolution of citalopram intermediate by asymmetric alcoholysis and thermodynamic analysis. Bioprocess Biosyst Eng 35:1043

    Article  Google Scholar 

  57. Ramani K, Saranya P, Jain SC et al (2013) Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies. Bioprocess Biosyst Eng 36:301

    Article  CAS  Google Scholar 

  58. Badgujar KC, Sasaki T, Bhanage BM, (2015) Synthesis of lipase nano-bio-conjugates as an efficient biocatalyst: characterization and activity-stability studies with potential biocatalytic applications. RSC Adv 5:55238–55251

    Article  CAS  Google Scholar 

  59. Badgujar KC, Bhanage BM (2015) Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications. Carbohydr Polym 134:709–717

    Article  CAS  Google Scholar 

  60. Badgujar KC, Bhanage BM (2015) Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology. Process Biochem 50:1224–1236

    Article  CAS  Google Scholar 

  61. Badgujar KC, Bhanage BM (2015) Thermo-chemical energy assessment for production of energy-rich fuel additive compounds by using levulinic acid and immobilized lipase. Fuel Process Technol 138:139–146

    Article  CAS  Google Scholar 

  62. Badgujar KC, Bhanage BM (2014) Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: kinetic modelling study. Enzyme Microb Technol 57:16–25

    Article  CAS  Google Scholar 

  63. Badgujar KC, Bhanage BM (2014) Enhanced biocatalytic activity of lipase immobilized on biodegradable copolymer of chitosan and polyvinyl alcohol support for synthesis of propionate ester: kinetic approach. Ind Eng Chem 53:18806–18815

    Article  CAS  Google Scholar 

  64. Badgujar KC, Bhanage BM (2015) The combine use of ultrasound and lipase immobilized on co-polymer matrix for efficient biocatalytic application studies. J Mol Catal B Enzym 122:255–264

    Article  CAS  Google Scholar 

  65. Badgujar KC, Bhanage BM (2016) The green metric evaluation and synthesis of diesel-blend compounds from biomass derived levulinic acid in supercritical carbon dioxide. Biomass Bioenerg 84:12–21

    Article  CAS  Google Scholar 

  66. Badgujar KC, Bhanage BM (2016) Enhanced biocatalytic activity of immobilized pseudomonas cepacia lipase under sonicated condition. Bioprocess Biosyst Eng 39:211–221

    Article  CAS  Google Scholar 

  67. Badgujar KC, Bhanage BM (2014) The solvent stability study with thermodynamic analysis and superior biocatalytic activity of burkholderia cepacia lipase immobilized on biocompatible hybrid matrix of polyvinyl alcohol and hypromellose. J Phys Chem B 118:14808–14819

    CAS  Google Scholar 

  68. Badgujar KC, Bhanage BM (2016) Lipase immobilization on hyroxypropyl methyl cellulose support and its applications for chemo-selective synthesis of β-amino ester compounds. Process Biochem 51:1420–1433

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Kirtikumar is grateful to the Council of Scientific & Industrial Research (CSIR), India (File No. 09/991(0015)/2011-EMR-I) for providing research fellowship and fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badgujar, K.C., Bhanage, B.M. Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier. Bioprocess Biosyst Eng 40, 741–757 (2017). https://doi.org/10.1007/s00449-017-1740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1740-z

Keywords

Navigation