Skip to main content

Advertisement

Log in

Maximizing the production of Scenedesmus obliquus in photobioreactors under different irradiation regimes: experiments and modeling

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Maximizing biomass productivity and photosynthetic efficiency are key factors to develop large-scale microalgae cultivation for biodiesel production. If the photobioreactor (PBR) is not operated under proper conditions, productivity and efficiency values drop considerably. In this work, the growth of Scenedesmus obliquus in continuous flat-panel PBR is considered. Experimental data and simulations were used with the aim of determining suitable working conditions to achieve maximum productivity. Microalgae concentration and productivity have been measured in a continuous 250 mL flat-panel PBR as a function of the space–time τ. Simulations were performed at both low and high irradiance values, with different light regimes (constant light and day–night profiles). Model parameters were optimized based on laboratory-scale experimental data, and the importance of the maintenance energy requirement as a function of light intensity was outlined. The effect of different extent of axial mixing on PBR performances was investigated. Results obtained show how to determine optimum working conditions and how they could be used in the design of a large-scale PBR to achieve maximum microalgal productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PBR:

Photobioreactor

EROEI:

Energy return on energy investment

OP:

Open pond

CFD:

Computational fluid dynamics

CSTR:

Continuous-flow stirred tank reactor

PFR:

Plug flow reactor

LHV:

Lower heating value, MJ kg−1

PFD:

Photon flux density, µmol m−2 s−1

PAR:

Photosynthetically active radiation

OD:

Optical density

References

  1. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214. doi:10.1016/j.jbiotec.2013.07.020

    Article  CAS  Google Scholar 

  2. Stephenson PG, Moore CM, Terry MJ et al (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623. doi:10.1016/j.tibtech.2011.06.005

    Article  CAS  Google Scholar 

  3. Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159. doi:10.1016/j.copbio.2008.02.004

    Article  CAS  Google Scholar 

  4. Ullah K, Ahmad M, Sofia et al (2015) Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel 143:414–423. doi:10.1016/j.fuel.2014.10.064

    Article  CAS  Google Scholar 

  5. Ramos Tercero EA, Sforza E, Bertucco A (2013) Energy profitability analysis for microalgal biocrude production. Energy 60:373–379. doi:10.1016/j.energy.2013.08.003

    Article  Google Scholar 

  6. Muñoz-Tamayo R, Mairet F, Bernard O (2013) Optimizing microalgal production in raceway systems. Biotechnol Prog 29:543–552. doi:10.1002/btpr.1699

    Article  Google Scholar 

  7. Chiaramonti D, Prussi M, Casini D et al (2013) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy 102:101–111. doi:10.1016/j.apenergy.2012.07.040

    Article  Google Scholar 

  8. Takache H, Christophe G, Cornet JF, Pruvost J (2010) Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Prog 26:431–440. doi:10.1002/btpr.356

    CAS  Google Scholar 

  9. Pruvost J, Cornet JF, Goetz V, Legrand J (2011) Modeling dynamic functioning of rectangular photobioreactors in solar conditions. AIChE J 57:1947–1960. doi:10.1002/aic

    Article  CAS  Google Scholar 

  10. Fernandes BD, Mota A, Ferreira A et al (2014) Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chem Eng Sci 117:445–454. doi:10.1016/j.ces.2014.06.043

    Article  CAS  Google Scholar 

  11. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177. doi:10.1002/elsc.200900003

    Article  CAS  Google Scholar 

  12. Borowitzka M, Moheimani N (2012) Algae for biofuels and energy

  13. Pandey A, Lee DJ, Chisti Y, Soccol CR (2014) Biofuels from Algae. Elsevier. doi:10.1016/S1471-0846(06)70577-7

    Google Scholar 

  14. Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288. doi:10.1007/s00253-010-3047-8

    Article  CAS  Google Scholar 

  15. Sforza E, Enzo M, Bertucco A (2014) Design of microalgal biomass production in a continuous photobioreactor: an integrated experimental and modeling approach. Chem Eng Res Des 92:1153–1162. doi:10.1016/j.cherd.2013.08.017

    Article  CAS  Google Scholar 

  16. Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 104:352–359. doi:10.1002/bit.22394

    Article  CAS  Google Scholar 

  17. Sforza E, Urbani S, Bertucco A (2014) Evaluation of maintenance energy requirements in the cultivation of Scenedesmus obliquus: effect of light intensity and regime. J Appl Phycol. doi:10.1007/s10811-014-0460-x

    Google Scholar 

  18. Kim CW, Sung MG, Nam K et al (2014) Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation. Bioresour Technol 159:30–35. doi:10.1016/j.biortech.2014.02.024

    Article  CAS  Google Scholar 

  19. Pruvost J, Van Vooren G, Le Gouic B et al (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158. doi:10.1016/j.biortech.2010.06.153

    Article  CAS  Google Scholar 

  20. Bertucco A, Beraldi M, Sforza E (2014) Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day-night irradiation: experiments and simulation. Bioprocess Biosyst Eng 1–8. doi:10.1007/s00449-014-1125-5

  21. Tang D, Han W, Li P et al (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076. doi:10.1016/j.biortech.2010.10.047

    Article  CAS  Google Scholar 

  22. Kaewkannetra P, Enmak P, Chiu T (2012) The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol Bioprocess Eng 17:591–597. doi:10.1007/s12257-011-0533-5

    Article  CAS  Google Scholar 

  23. Gris B, Morosinotto T, Giacometti GM et al (2013) Cultivation of scenedesmus obliquus in photobioreactors: effects of light intensities and light-dark cycles on growth, productivity, and biochemical composition. Appl Biochem Biotechnol 172:1–13. doi:10.1007/s12010-013-0679-z

    Google Scholar 

  24. Levenspiel O (1996) The Chemical Reactor Omnibook

  25. Dussap C (2009) A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. doi:10.1021/bp.138

    Google Scholar 

  26. Pottier L, Pruvost J, Deremetz J et al (2005) A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. Biotechnol Bioeng 91:569–582. doi:10.1002/bit.20475

    Article  CAS  Google Scholar 

  27. Domenicali G (2013) Analisi economica di un impianto industriale per la produzione autotrofa di olio da microalghe. Master Thesis. University of Padova, Italy (in Italian)

  28. Zelibor JL, Romankiw L, Hatcher PG, Colwell RR (1988) Comparative analysis of the chemical composition of mixed and pure cultures of green algae and their decomposed residues by C nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 54:1051–1060

    CAS  Google Scholar 

  29. Takache H, Pruvost J, Cornet JF (2012) Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor. Biotechnol Prog 28:681–692. doi:10.1002/btpr.1545

    Article  CAS  Google Scholar 

  30. Molin G (1983) Measurement of the maximum specific growth rate in chemostat of Pseudomonas spp. with different abilities for biofilm formation. Eur J Appl Microbiol Biotechnol 18:303–307. doi:10.1007/BF00500496

    Article  Google Scholar 

  31. Cuaresma M, Janssen M, van den End EJ et al (2011) Luminostat operation: a tool to maximize microalgae photosynthetic efficiency in photobioreactors during the daily light cycle? Bioresour Technol 102:7871–7878. doi:10.1016/j.biortech.2011.05.076

    Article  CAS  Google Scholar 

  32. De Winter L, Schepers LW, Cuaresma M et al (2014) Circadian rhythms in the cell cycle and biomass composition of Neochloris oleoabundans under nitrogen limitation. J Biotechnol 187:25–33. doi:10.1016/j.jbiotec.2014.07.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Barbera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbera, E., Sforza, E. & Bertucco, A. Maximizing the production of Scenedesmus obliquus in photobioreactors under different irradiation regimes: experiments and modeling. Bioprocess Biosyst Eng 38, 2177–2188 (2015). https://doi.org/10.1007/s00449-015-1457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1457-9

Keywords

Navigation