Skip to main content
Log in

Spatially resolved in situ determination of reaction progress using microfluidic systems and FT-IR spectroscopy as a tool for biocatalytic process development

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A concept for the determination of concentrations in microchannels using FT-IR spectroscopy in transmission is presented. The fundamental idea of spatially resolved measurements along several measuring points was implemented in a single-channel microreactor. Compared to existing microreactor setups for the analysis of fast chemical reactions or mixing processes, the presented concept enables longer residence times at appropriate resolution. Once steady-state conditions were reached in the reactor, mid-infrared spectra were collected at different locations. Information throughout the considered conversion range is available, which is of great importance to analyze inhibitory effects, next to the kinetic constants (v max and K M). Therefore, this technology enables a rapid screening of (bio-)catalysts, substrate specificity and process conditions. In particular, the analysis of real substrates instead of model substrates and the possibility to follow side reactions and follow-up reactions during enzymatic catalysis open a broad field of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

ASE:

Advanced silicon etching

ATR:

Attenuated total reflectance

CalB:

Candida antarctica lipase B

FID:

Flame ionization detector

FT-IR:

Fourier transform infrared

GC:

Gas chromatography

IR:

Infrared

LaOEt:

Ethyl levulinate

LOD:

Limit of detection

LOQ:

Limit of quantitation

µTAS:

Micro total analysis system

PLS:

Partial least squares

RMSECV:

Root mean square error of cross-validation

SERS:

Surface-enhanced Raman spectroscopy

STR:

Stirred tank reactor

b, b 0 :

Regression coefficient

c La :

Concentration of levulinic acid

c LaOEt :

Concentration of ethyl levulinate

E(θ):

Density curve of dimensionless residence time

v max :

Maximum reaction rate

K I :

Inhibition constant

K M :

Michaelis constant

n :

Number of data sets

θ :

Dimensionless residence time

v :

Reaction rate

x i :

Measured spectrum

y i :

Calibration value

\({\hat{y}}_{i}\) :

Predicted value

References

  1. Urban PL, Goodall DM, Bruce NC (2006) Enzymatic microreactors in chemical analysis and kinetic studies. Biotech Adv 24(1):42–57

    Article  CAS  Google Scholar 

  2. Hartmann RL, Jensen KF (2009) Microchemical systems for continuous-flow synthesis. Lab Chip 9(17):2495–2507

    Article  Google Scholar 

  3. Jahnisch K, Hessel V, Lowe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43:406–446

    Article  Google Scholar 

  4. Fagaschewski J, Bohne S, Kaufhold D, Müller J, Hilterhaus L (2012) Modular micro reaction engineering for carboligation catalyzed by benzoylformate decarboxylase. Green Process Synth 1(4):337–344

    CAS  Google Scholar 

  5. Minnich CB, Sipeer F, Greiner L, Liauw MA (2010) Determination of the dispersion characteristics of miniaturized coiled reactors with fiber-optic Fourier transform mid-infrared spectroscopy. Ind Eng Chem Res 49:5530–5535

    Article  CAS  Google Scholar 

  6. Bodla VK, Seerup R, Krühne U, Woodley JM, Gernaey KV (2013) Microreactors and CFD as tools for biocatalysis reactor design: a case study. Chem Eng Techn 36(6):1017–1026

    Article  CAS  Google Scholar 

  7. Kara S, Anton F, Solle D, Neumann M, Hitzmann B, Scheper T, Liese A (2010) Fluorescence spectroscopy as a novel method for on-line analysis of biocatalytic C–C bond formations. Mol Cat B 66(1–2):124–129

    Article  CAS  Google Scholar 

  8. Hill EK, de Mello AJ (2010) Single-molecule detection using confocal fluorescence detection: assessment of optical probe volumes. Analyst 125:1033–1036

    Article  Google Scholar 

  9. Ferstl W, Klahn T, Schweikert W, Billeb G, Schwarzer M, Loebbecke S (2007) Inline analysis in microreaction technology: a suitable tool for process screening and optimization. Chem Eng Technol 30(3):370–378

    Article  CAS  Google Scholar 

  10. Xiao Y, Yu XD, Wang K, Xu JJ, Huang J, Chen HY (2007) Study on the separation of amino acids in modified poly(dimethylsiloxane) microchips. Talanta 71:2048–2055

    Article  CAS  Google Scholar 

  11. Pan T, Kelly RT, Asplund MC, Woolley AT (2004) Fabrication of calcium fluoride capillary electrophoresis microdevices for on-chip infrared detection. J Chromatography A 1027:231–235

    Article  CAS  Google Scholar 

  12. Jensen KF (2006) Silicon based microchemical systems—characteristics and applications. MRS Bull 31:101–107

    Article  CAS  Google Scholar 

  13. Leung SA, Winkle RF, Wootton RCR, de Mello AJ (2005) A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online Raman spectroscopic detection. Analyst 130:46–51

    Article  CAS  Google Scholar 

  14. Lee M, Lee JP, Rhee H, Choo J, Chai YG, Lee EK (2003) Applicability of laser-induced Raman microscopy for in situ monitoring of imine formation in a glass microfluidic chip. J Raman Spectr 34:737–742

    Article  CAS  Google Scholar 

  15. Salmon JB, Ajdari A, Tabeling P, Servant L, Talaga D, Joanicot M (2005) In situ Raman imaging of interdiffusion in a microchannel. Appl Phys Lett 86(9):094106

    Article  Google Scholar 

  16. Liu GL, Lee LP (2005) Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett 87(7):074101

    Article  Google Scholar 

  17. Docherty FT, Monaghan PB, Keir R, Graham D, Smith WE, Cooper JM (2004) The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip. Chem Commun 1:118–119

    Article  Google Scholar 

  18. Popp J, Tuchin VV, Chiou A, Heinemann SH (2012) Handbook of Biophotonics, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  19. Kazarian SG (2007) Enhancing high-throughput technology and microfluidics with FTIR spectroscopic imaging. Anal Bioanal Chem 388:529–532

    Article  CAS  Google Scholar 

  20. Keybl J, Jensen KF (2011) Microreactor system for high-pressure continuous flow homogeneous catalysis measurements. Ind Eng Chem Res 50(19):11013–11022

    Article  CAS  Google Scholar 

  21. Carter CF, Lange H, Ley SV, Baxendale IR, Wittkamp B, Goode JG, Gaunt NL (2010) ReactIR flow cell: a new analytical tool for continuous flow chemical processing. Org Proc Res Dev 14(2):393–404

    Article  CAS  Google Scholar 

  22. Chan AKL, Gulati S, Edel JB, de Mello AJ, Kazarian SG (2009) Chemical imaging of microfluidic flows using ATR-FTIR spectroscopy. Lab Chip 9:2909–2913

    Article  CAS  Google Scholar 

  23. Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3:2681–2716

    Article  CAS  Google Scholar 

  24. Menz W, Mohr J, Paul O (2001) Microsystems technology. Wiley-VCH, Weinheim

    Google Scholar 

  25. Müller JJ, Neumann M, Scholl P, Hilterhaus L, Eckstein M, Thum O, Liese A (2010) Online monitoring of biotransformations in high viscous multiphase systems by means of FT-IR and chemometrics. Anal Chem 82(14):6008–6014

    Article  Google Scholar 

  26. Müller J, Baum S, Hilterhaus L, Eckstein M, Thum O, Liese A (2011) Simultaneous determination of mono-, di- and triglycerides in multiphase systems by online FT-IR spectroscopy. Anal Chem 83(24):9321–9327

    Article  Google Scholar 

  27. Gebhard J, Sellin D, Hilterhaus L, Liese A (2013) Online analysis of enzymatic polycondensation reactions in bubble column reactors by means of ATR-FTIR spectroscopy. Chem Ing Tech 85(7):1016–1022

    Article  CAS  Google Scholar 

  28. Smith DY, Karstens W, Siles E, Inokuti M (2013) Defect and analysis effects in the infrared optical properties of silicon. Phys Status Solidi B 250(2):271–277

    Article  CAS  Google Scholar 

  29. Kaufhold D, Fagaschewski J, Sellin D, Strompen S, Liese A, Hilterhaus L (2014) Novel μ-membrane module for online determination of the free fatty acid content in the dispersed phase of oil-in-water emulsions. Anal Bioanal Chem 406(13):3157–3166

    Article  CAS  Google Scholar 

  30. Thomsen V, Schatzlein D, Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy 18(12):112–114

    CAS  Google Scholar 

  31. Gross E, Shu XZ, Alayoglu S, Bechtel HA, Martin MC, Toste FD, Somorjai GA (2014) In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters. J Am Chem Soc 136:3624–3629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Hilterhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagaschewski, J., Sellin, D., Wiedenhöfer, C. et al. Spatially resolved in situ determination of reaction progress using microfluidic systems and FT-IR spectroscopy as a tool for biocatalytic process development. Bioprocess Biosyst Eng 38, 1399–1405 (2015). https://doi.org/10.1007/s00449-015-1381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1381-z

Keywords

Navigation