Skip to main content
Log in

Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Thermophilic fungi are potential sources of thermostable enzymes and other value added products. Present study has focused on optimization of different physicochemical parameters for production of thermostable cellulases and xylanase by Thermoascus aurantiacus RCKK under SSF. Enzyme production was supported maximally on wheat bran fed with 20 % inoculum, at initial pH 5, temperature 45 °C and moisture ratio 1:3. The supplementation of wheat bran with yeast extract, Tween-80 and glycine further improved enzyme titres (CMCase 88 IU/g, FPase 15.8 IU/g, β-glucosidase 25.3 IU/g and xylanase 6,543 IU/g). The crude enzymes hydrolyzed phosphoric acid-swollen wheat straw, avicel and untreated xylan up to 74, 71 and 90 %, respectively. In addition, T. aurantiacus RCKK produced antioxidants as fermentation by-products with significant %DPPH scavenging, FRAP and in vivo antioxidant capacity against H2O2-treated Saccharomyces cerevisiae. These capabilities show that it holds potential to exploit crop by-products for providing various commodities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kocabas A, Ogel Z-B, Bakir U (2014) Xylanase and itaconic acid production by Aspergillus terreus NRRL 1960 within a biorefinery concept. Ann Microbiol 64:75–84

    Article  CAS  Google Scholar 

  2. Kuhad R-C, Singh A, Eriksson K-E (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  Google Scholar 

  3. Olofsson K, Wiman M, Lidén G (2010) Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J Biotechnol 145:168–175

    Article  CAS  Google Scholar 

  4. Szijártó N, Siika-aho M, Tenkanen M, Alapuranen M, Vehmaanperä J, Réczey K, Viikari L (2008) Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 136:140–147

    Article  Google Scholar 

  5. Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Advances Biochem Eng Biotechnol 108:121–145

    CAS  Google Scholar 

  6. Haki G-D, Rakshit S-K (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  Google Scholar 

  7. Kamat S, Khot M, Zinjarde S, Ravikumar A, Namdeo W (2013) Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour Technol 135:246–253

    Article  CAS  Google Scholar 

  8. Yu H-J, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Ann Rev Phytopathol 43:437–458

    Article  CAS  Google Scholar 

  9. Zhang J, Zhang J, Lin L, Chen T, Zhang J, Liu S, Li Z, Ouyang P (2009) Dissolution of microcrystalline cellulose in phosphoric acid—molecular changes and kinetics. Molecules 14:5027–5041

    Article  CAS  Google Scholar 

  10. Kuhad R-C, Kapoor R-K, Lal R (2004) Improving the yield and quality of DNA isolated from white-rot fungi. Folia Microbiol 49:112–116

    Article  CAS  Google Scholar 

  11. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods research resource. Mol Bio Evol 28:2731–2739

    Article  CAS  Google Scholar 

  12. Zhang L, Sundar K-R, Sang J-C, Narsimha R, Paul S-T, Ananthanc R, Longvahc T (2012) Antioxidant and immunomodulatory activities of polysaccharides from the roots of Sanguisorba officinalis. Int J Biological Macromol 51:1057–1062

    Article  CAS  Google Scholar 

  13. Kuhad R-C, Gupta R, Khasa Y-P, Singh A (2010) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101:8348–8354

    Article  CAS  Google Scholar 

  14. Ghose T-K (1987) Measurements of cellulase activities. Methods Enzymol 59:257–268

    CAS  Google Scholar 

  15. Wood TM, Bhat MK (1988) Methods for measuring cellulase activities. In: Wood WA, Kellogg ST (Eds) Methods in Enzymology, vol. 160. Academic Press Inc., London, UK, pp 87–112

  16. Kapoor M, Nair L-M, Kuhad R-C (2008) Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem Eng J 38:88–97

    Article  CAS  Google Scholar 

  17. Miller L-G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426

    Article  CAS  Google Scholar 

  18. Brand-Williams W, Cuvelier M-E, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  19. Wong C, Li H, Cheng K, Chen F (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97:705–711

    Article  CAS  Google Scholar 

  20. Deswal D, Khasa Y-P, Kuhad R-C (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072

    Article  CAS  Google Scholar 

  21. Maheshwari R, Bharadwaj G, Bhat M-K (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  Google Scholar 

  22. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    Article  CAS  Google Scholar 

  23. Hong F, Meinander N-Q, Jo L-J (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng 79(4):438–449

    Article  CAS  Google Scholar 

  24. Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris B-J (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38:1099–1104

    Article  CAS  Google Scholar 

  25. Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99:7553–7564

    Article  CAS  Google Scholar 

  26. Narra M, Dixit G, Divecha J, Madamwar D, Shah A-R (2012) Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour Technol 121:355–361

    Article  CAS  Google Scholar 

  27. Shah A-R, Madamwar D (2005) Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India. Bioresour Technol 21:233–243

    CAS  Google Scholar 

  28. Poorna C-A, Prema P (2007) Production of cellulase-free endoxylanase from novel alkalophilic thermotolerant Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour Technol 98:485–490

    Article  Google Scholar 

  29. Hamidi-esfahani Z, Shojaosadati S-A, Rinzema A (2004) Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation. Biochem Eng J 21:265–272

    Article  CAS  Google Scholar 

  30. Pal A, Khanum F (2010) Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresour Technol 101:7563–7569

    Article  CAS  Google Scholar 

  31. Sabu A, Shegal K, Pandey G (2005) Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620. Food Technol Biotechnol 43(2):133–138

    CAS  Google Scholar 

  32. Soni R, Nazir A, Chadha B-S (2010) Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka Floc and bagasse. Ind Crop Prod 31:277–283

    Article  CAS  Google Scholar 

  33. Sun X, Liu Z, Qu Y, Li X (2008) The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol 146:119–128

    Article  CAS  Google Scholar 

  34. Gupta G, Sahai V, Gupta R-V (2013) Optimization of xylanase production from Melanocarpous albomyces using wheat straw extract and its scale up in stirred tank bioreactor. Ind J Chem Technol 20:282–289

    CAS  Google Scholar 

  35. Gautam S-P, Bundela P-S, Pandey AK, Awasthi M-K (2010) Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. Int J Environ Sci 1:656–665

    CAS  Google Scholar 

  36. Mridula S, Murugamml R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate, Brazilian. J Microbiol 42:1119–1127

    Google Scholar 

  37. Ahamed A, Vermette P (2010) Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem Eng J 49:379–387

    Article  CAS  Google Scholar 

  38. Seo J-D, Fujita H, Sakoda A (2011) Effects of non ionic surfactant, Tween-20 on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 17:813–822

    Article  CAS  Google Scholar 

  39. Dhawan S, Kuhad R-C (2002) Effect of amino acids and vitamins on laccase production by the bird’ s nest fungus Cyathus bulleri. Bioresour Technol 84:35–38

    Article  CAS  Google Scholar 

  40. Gomes I, Gomes J, Gomes D-J (2000) Simultaneous production of high activities of thermostable endoglucanase and β-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53(4):461–468

    Article  CAS  Google Scholar 

  41. Anderson W-F, Akin D-E (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 355–366

  42. Badhan A-K, Chadha B-S, Kaur J, Saini H-S, Bhat M-K (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol 98:504–510

    Article  CAS  Google Scholar 

  43. Membrillo I, Meneses M, Favela E, Loera O, Sa C (2008) Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour Technol 99:7842–7847

    Article  CAS  Google Scholar 

  44. Silva R, Lago E-S, Merheb C-W, Macchione M-M, Park Y-K, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus Miehe. Braz J Microbiol 36:235–241

    Google Scholar 

  45. Chandra M-S, Viswanath B, Reddy B-R (2007) Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Indian J Microbiol 255760:323–328

    Article  Google Scholar 

  46. Singhania R-R, Sukumaran R-K (2007) Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. App Biochem Biotechnol 60–70

Download references

Acknowledgments

The authors gratefully acknowledge financial support under major research project grant [F.2-2/2011 (SAP-II)] from University Grants Commission (UGC) and University of Delhi. KKJ also thanks CSIR for senior research fellowship during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, K.K., Bhanja Dey, T., Kumar, S. et al. Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Bioprocess Biosyst Eng 38, 787–796 (2015). https://doi.org/10.1007/s00449-014-1320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1320-4

Keywords

Navigation