Skip to main content
Log in

Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Sucrose from sugarcane is produced in abundance in Brazil, which provides an opportunity to manufacture other high-value products. Gluconic acid (GA) can be produced by multi-enzyme conversion of sucrose using the enzymes invertase, glucose oxidase, and catalase. In this process, one of the byproducts is fructose, which has many commercial applications. This work concerns the batch mode production of GA in an airlift reactor fed with sucrose as substrate. Evaluation was made of the influence of temperature and pH, as well as the thermal stability of the enzymes. Operational conditions of 40 °C and pH 6.0 were selected, based on the enzymatic activity profiles and the thermal stabilities. Under these conditions, the experimental data could be accurately described by kinetic models. The maximum yield of GA was achieved within 3.8 h, with total conversion of sucrose and glucose and a volumetric productivity of around 7.0 g L−1 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bankar S, Bule M, Singhal R, Ananthanarayan L (2009) Glucose oxidase—An overview. Biotechnol 27:489–501

    CAS  Google Scholar 

  2. Godjevargova T, Dayal R, Turmanova S (2004) Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane. Macromol Biosci 4:950–956

    Article  CAS  Google Scholar 

  3. Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  4. Wong C, Wong K, Chen X (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78:927–938

    Article  CAS  Google Scholar 

  5. Xue R, Woodley J (2012) Process technology for multi-enzymatic reaction systems. Bioresour Technol 115:183–195

    Article  CAS  Google Scholar 

  6. Nakao K, Kiefner A, Furumoto K, Harada T (1997) Production of gluconic acid with immobilized glucose oxidase in airlift reactors. Chem Eng Sci 52:4127–4133

    Article  CAS  Google Scholar 

  7. Hestekin J, Lin Y, Frank J, Snyder S, St Martin E (2002) Electrochemical enhancement of glucose oxidase kinetics: gluconic acid production with anion exchange membrane reactor. J Appl Electrochem 32:1049–1052

    Article  CAS  Google Scholar 

  8. Sheu D, Lio P, Chen S, Lin C, Duan K (2001) Production of fructooligosaccharides in high yield using a mixed enzyme system of beta-fructofuranosidase and glucose oxidase. Biotechnol Lett 23:1499–1503

    Article  CAS  Google Scholar 

  9. Silva AR, Tomotani EJ, Vitolo M (2011) Invertase, glucose oxidase and catalase for converting sucrose to fructose and gluconic acid through batch and membrane-continuous reactors. Braz J Pharm Sci 47:399–407

    Article  Google Scholar 

  10. System of analysis of foreign trade information (ALICEWEB). http://aliceweb.mdic.gov.br. Accessed 27 August 2014

  11. Purane NK et al (2012) Gluconic acid production from golden syrup by Aspergillus niger strain using semiautomatic stirred-tank fermenter. J Microbial Biochem Technol 4:92–95

    Article  CAS  Google Scholar 

  12. Foreign Agricultural Service/United States Department of Agriculture (FAS/USDA). Sugar: world markets and trade. http://www.fas.usda.gov/commodities/sugar. Accessed 28 August 2014

  13. National Supply Company (CONAB), Brazilian sugarcane harvest monitoring (in Portuguese). http://www.conab.gov.br. Accessed 28 August 2014

  14. SugarCane.org. http://sugarcane.org. Accessed 28 August 2014

  15. Brazilian Sugarcane Industry Association (UNICA, in Portuguese). http://www.unica.com.br. Accessed 27 August 2014

  16. Chandra A, Jain R, Solomon S (2012) Complexities of invertases controlling sucrose accumulation and retention in sugarcane. Curr Sci 102:857–867

    CAS  Google Scholar 

  17. Switala J, Loewen P (2002) Diversity of properties among catalases. Arch Biochem Biophys 401:145–154

    Article  CAS  Google Scholar 

  18. Sikula I, Jurascik M, Markos J (2007) Modeling of fermentation in an internal loop airlift bioreactor. Chem Eng Sci 62:5216–5221

    Article  CAS  Google Scholar 

  19. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  20. Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49:474–478

    Article  CAS  Google Scholar 

  21. Sadana A, Henley JP (1987) Single-step unimolecular non-first-order enzyme deactivation kinetics. Biotechnol Bioeng 30:717–723

    Article  CAS  Google Scholar 

  22. Bowski L, Saini R, Ryu DY, Vieth WR (1971) Kinetic modeling of the hydrolysis of sucrose by invertase. Biotechnol Bioeng 13:641–656

    Article  CAS  Google Scholar 

  23. Leskovac V, Trivic S, Wohlfahrt G, Kandrac J, Pericin D (2005) Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int J Biochem Cell Biol 37:731–750

    Article  CAS  Google Scholar 

  24. Scandalios JG (1997) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  25. Badino A C, Hokka CO, Cerri M O (2004) Pneumatic reactor with an inner and a transparent outer cylinder gas injection for circulation and temperature control of the enclosed reaction mixture. Braz Pat PI 0404703-6

  26. Arruda L, Vitolo M (1999) Characterization of invertase entrapped into calcium alginate beads. Appl Biochem Biotechnol 81:23–33

    Article  CAS  Google Scholar 

  27. Hsieh H, Liu P, Liao W (2000) Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol Lett 22:1459–1464

    Article  CAS  Google Scholar 

  28. Bartoszek M, Ksciuczyk M (2005) Study of the temperature influence on catalase using spin labelling method. J Mol Struct 744–747:733–736

  29. Chance B (1952) Effect of pH upon the reaction kinetics of the enzyme-substrate compounds of catalase. J Biol Chem 194:471–481

    CAS  Google Scholar 

  30. Courjean O, Mano N (2011) Recombinant glucose oxidase from Penicillium amagasakiense for efficient bioelectrochemical applications in physiological conditions. J Biotechnol 151:122–129

    Article  CAS  Google Scholar 

  31. Wang W, Sun M, Liu W, Zhang B (2008) Purification and characterization of a psychrophilic catalase from Antarctic Bacillus. Can J Microbiol 54:823–828

    Article  CAS  Google Scholar 

  32. Yamaguchi H, Sugiyama K, Hosoya M, Takahashi S, Nakayama T (2011) Gene cloning and biochemical characterization of a catalase from Gluconobacter oxydans. J Biosci Bioeng 111:522–527

    Article  CAS  Google Scholar 

  33. Bao J, Furumoto K, Yoshimoto M, Fukunaga K, Nakao K (2003) Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase. Biochem Eng J 13:69–72

    Article  CAS  Google Scholar 

  34. Fita I, Rossmann MG (1985) The active center of catalase. J Mol Biol 185:21–37

    Article  CAS  Google Scholar 

  35. Chelikani P, Fita I, Loewen P (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  Google Scholar 

  36. Isik S, Alkan S, Toppare L, Cianga I, Yagci Y (2003) Immobilization of invertase and glucose oxidase in poly 2-methylbutyl-2-(3-thienyl) acetate/polypyrrole matrices. Eur Polym J 39:2375–2381

    Article  CAS  Google Scholar 

  37. Fiedurek J (2001) Production of gluconic acid by immobilized in pumice stones mycelium of Aspergillus niger using unconventional oxygenation of culture. Biotechnol Lett 23:1789–1792

    Article  CAS  Google Scholar 

  38. Cerri MO, Badino AC (2012) Shear conditions in clavulanic acid production by Streptomyces clavuligerus in stirred tank and airlift bioreactors. Bioprocess Biosyst Eng 35:977–984

    Article  CAS  Google Scholar 

  39. Mukhopadhyaya R, Chatterjee S, Chatterjee BP, Banerjeeb PC, Guhaa AK (2005) Production of gluconic acid from whey by free and immobilized Aspergillus niger. Int Dairy J 15:299–303

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the Brazilian Research Foundations FAPESP (grant number 2011/23807-1), CNPq, and CAPES. The authors also thank LNF Latino Americana (Bento Gonçalves, Brazil) and Granotec do Brasil S.A. (Araucária, Brazil) for generous donation of the enzymes invertase and glucose oxidase, respectively, and the Postgraduate Program in Chemical Engineering of the Federal University of São Carlos (PPGEQ/UFSCar), where this work was undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Waldir Tardioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mafra, A.C.O., Furlan, F.F., Badino, A.C. et al. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system. Bioprocess Biosyst Eng 38, 671–680 (2015). https://doi.org/10.1007/s00449-014-1306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1306-2

Keywords

Navigation