Skip to main content
Log in

Modeling and steady state simulation: production of xanthan gum from sugarcane broth

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The work is focused on developing a mathematical model for continuous process of xanthan gum production. The main objective of the study is to simulate the model, observe the behavior of substrate consumption, biomass and product formation with respect to dilution rate and determine the optimum dilution rate for which the reactor is to be designed. Systems with and without recycling of cells are considered and the optimum dilution rate is found. For the kinetic parameters used, the optimum dilution rate for the system with no recycling is 0.205 and 0.35 h−1 for the system that includes recycling of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

V L :

Working volume of fermentor, m3

F 0 :

Volumetric flow rate of inlet stream, m3 h−1

F :

Volumetric flow rate of outlet stream, m3 h−1

F Z :

Volumetric flow rate of the stream leaving the reactor, m3 h−1

D :

Dilution rate, h−1 \((D = F/V_{\text{L}} )\)

D cric :

Critical/washout dilution rate, h−1

D opt :

Optimum dilution rate, h−1

µ :

Specific growth rate, h−1

μ m :

Maximum specific rate, h−1

r X :

Rate of biomass production, kg m−3 h−1

r s :

Rate of substrate consumption, kg m−3 h−1

r P :

Rate of product formation, kg m−3 h−1

q P :

Specific rate of product formation, \(\frac{\text{kg\;of\;product\;formed}}{\text{kg\;of\;biomass\;formed\;h}}\)

X 0 :

Concentration of biomass in inlet stream, kg m−3

X :

Concentration of biomass in outlet stream, kg m−3

X R :

Concentration of biomass in the stream leaving the reactor, kg m−3

X m :

Maximum biomass concentration (a), kg m−3

X Rm :

Maximum biomass concentration (b), kg m−3

S 0 :

Concentration of substrate in inlet stream, kg m−3

S :

Concentration of substrate in outlet stream, kg m−3

S R :

Concentration of substrate in the stream leaving the reactor, kg m−3

P 0 :

Concentration of product in inlet stream, kg m−3

P :

Concentration of product in outlet stream, kg m−3

P R :

Concentration of product in the stream leaving the stream, kg m−3

P X :

Productivity of biomass, kg m−3 h−1

P P :

Productivity of product, kg m−3 h−1

Y XS :

 = \(\frac{{r_{\text{X}} }}{{ - r_{\text{S}} }} = \frac{\text{Amount\;of\;biomass\;produced\;in\;kg}}{\text{Amount\;of\;substrate\;consumed\;in\;kg}}\)

Y PX :

 = \(\frac{{r_{\text{P}} }}{{r_{\text{X}} }} = \frac{\text{Amount\;of\;product\;produced\;in\;kg}}{\text{Amount\;of\;biomass\;produced\;in\;kg}}\)

Y PS :

 = \(\frac{{r_{\text{P}} }}{{ - r_{\text{S}} }} = \frac{\text{Amount\;of\;product\;produced\;in\;kg}}{\text{Amount\;of\;substrate\;consumed\;in\;kg}}\)

m s :

Maintenance coefficient for substrate consumption, \(\frac{\text{kg\;of\;substrate\;consumed}}{\text{kg\;of\;biomass\;formed h}}\)

m p :

Maintenance coefficient for product formation, \(\frac{\text{kg\;of\;product\;formed}}{\text{kg\;of\;biomass\;formed\;h}}\)

References

  1. Marquet M, Mikolajczak M, Thorne L, Pollock TJ (1989) Improved strains for production of xanthan gum by fermentation of Xanthomonas campestris. J Ind Microbiol 4:55–64

    Article  CAS  Google Scholar 

  2. Fu JF, Tseng YH (1990) Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl. Environ Microbiol 56(4):919–923

  3. Pollock TJ, Mikolajczak M, Yamazaki M, Thorne L, Armentrout RW (1997) Production of xanthan gum by Sphingomonas bacteria carrying genes from Xanthomonas campestris. J Ind Microbiol 19(2):92–97

    Article  CAS  Google Scholar 

  4. Becker IA, Katzen F, Piihler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Biochem Biotech 50:145–152

    CAS  Google Scholar 

  5. Leela JK, Sharma G (2000) Studies on xanthan production from Xanthomonas campestris. Bioprocess Eng 23(March 1999):687–689

  6. Amanullah A, Satti S, Nienow A (1998) Enhancing xanthan fermentations by different modes of glucose feeding. Biotechnol Prog 14(2):265–269. doi:10.1021/bp9800079

    Article  CAS  Google Scholar 

  7. Chaitali M, Kapadi M, Suraishkumar GK, Gudi RD (2003) Productivity improvement in xanthan gum fermentation using multiple substrate optimization. Biotechnol Prog 19(4):1190–1198. doi:10.1021/bp0257269

    Article  CAS  Google Scholar 

  8. Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, Kyriakidis DA, Skaracis GN (2003) Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem 39(2):249–256. doi:10.1016/S0032-9592(03)00067-0

    Article  CAS  Google Scholar 

  9. Psomas SK, Liakopoulou-Kyriakides M, Kyriakidis DA (2007) Optimization study of xanthan gum production using response surface methodology. Biochem Eng J 35(3):273–280. doi:10.1016/j.bej.2007.01.036

    Article  CAS  Google Scholar 

  10. Mirik M, Demirci AS, Gumus T, Arici M (2011) Xanthan gum production under different operational conditions by Xanthomonas axonopodis pv vesicatoria isolated from pepper plant. Food Sci Biotechnol 20(5):1243–1247. doi:10.1007/s10068-011-0171-x

    Article  CAS  Google Scholar 

  11. Xueming Z, Zongding H (1994) Rheological characteristics, power consumption, mass and heat transfer during xanthan gum production. Chin J Chem Eng 2(4):198–209

    Google Scholar 

  12. Sanchez A, Ramirez ME, Torres LG, Galindo E (1997) Characterization of xanthans from selected Xanthomonas strains cultivated under constant dissolved oxygen. World J Microbiol Biotechnol 13:443–451

    Article  CAS  Google Scholar 

  13. Zhang Z, Chen H (2010) Fermentation performance and structure characteristics of xanthan produced by Xanthomonas campestris with a glucose/xylose mixture. Appl Biochem Biotechnol 160(6):1653–1663. doi:10.1007/s12010-009-8668-yz

    Article  CAS  Google Scholar 

  14. Garci-Ochoa F, Santos VE, Casas JA, Gomez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579

    Article  Google Scholar 

  15. Silva MF, Fornari RCG, Mazutti MA, de Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Luccio MD, Treichel H (2009) Production and characterization of xanthan gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng 90(1):119–123. doi:10.1016/j.jfoodeng.2008.06.010

    Article  CAS  Google Scholar 

  16. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106(1):1–12. doi:10.1016/j.jfoodeng.2011.03.035

  17. Palaniraj A, Jayaraman V, Hariram SB (2011) Influence of nitrogen sources and agitation in xanthan gum production by Xanthomonas campestris. Int J Adv Biotechnol Res 2(3):305–309

  18. Liakopoulou-Kyriakides M, Psomas SK, Kyriakides DA (1999) Xanthan gum production by Xanthomonas campestris w.t. fermentation from chestnut extract. Appl Biochem Biotechnol 82(4):175–183

    Article  CAS  Google Scholar 

  19. Yoo SD, Harcum SW (1999) Xanthan gum production from waste sugar beet pulp. Bioresour Technol 70(1):105–109. doi:10.1016/S0960-8524(99)00013-9

    Article  CAS  Google Scholar 

  20. Letisse F, Chevallereau P, Simon J-L, Lindley ND (2001) Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Appl Microbiol Biotechnol 55(4):417–422. doi:10.1007/s002530000580

    Article  CAS  Google Scholar 

  21. Woiciechowski AL, Soccol CR, Rocha SN, Pandey A (2004) Xanthan gum production from cassava bagasse hydrolysate with Xanthomonas campestris using alternative sources of nitrogen. Appl Biochem Biotechnol 118:305–312

    Article  CAS  Google Scholar 

  22. Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Enzym Microb Technol 39(2):197–207. doi:10.1016/j.enzmictec.2005.10.019

    Article  CAS  Google Scholar 

  23. Faria S, Vieira PA, Resende MM, Ribeiro EJ, Cardoso VL (2010) Application of a model using the phenomenological approach for prediction of growth and xanthan gum production with sugar cane broth in a batch process. LWT Food Sci Technol 43(3):498–506. doi:10.1016/j.lwt.2009.09.018

    Article  CAS  Google Scholar 

  24. Moosavi A, Karbassi A (2010) Bioconversion of sugar-beet molasses into xanthan gum. J Food Process Preserv 34(2):316–322. doi:10.1111/j.1745-4549.2009.00376.x

  25. Gilani SL, Najafpour GD, Heydarzadeh HD, Zare H (2011) Kinetic models for xanthan gum production using Xanthomonas campestris from molasses. Chem Ind Chem Eng Q 17(2):179–187. doi:10.2298/CICEQ101030002G

    Article  CAS  Google Scholar 

  26. Savvides AL, Katsifas EA, Hatzinikolaou DG, Karagouni AD (2012) Xanthan production by Xanthomonas campestris using whey permeate medium. World J Microb Biotechnol 28(8):2759–2764. doi:10.1007/s11274-012-1087-1

    Article  CAS  Google Scholar 

  27. Pinches A, Pallent LJ (1986) Rate and yield relationships in the production of xanthan gum by batch fermentations using complex and chemically defined growth media. Biotechnol Bioeng 28(10):1484–1496. doi:10.1002/bit.260281006

    Article  CAS  Google Scholar 

  28. Shu C, Yang S (1991) Kinetics and modeling of temperature effects on batch xanthan gum fermentation. Biotechnol Bioeng 3:567–574

    Article  Google Scholar 

  29. García-Ochoa F, Santos VE, Alcon A (1995) Xanthan gum production. An unstructured kinetic model. Enzym Microb Technol 17:206–317

  30. García-Ochoa F, Santos VE, Alcon A (1996) Simulation of xanthan gum production by a chemically structured kinetic model. Math Comput Simul 42:187–195

    Article  Google Scholar 

  31. Garcia-Ochoa F, Santos VE, Alco A (1998) Metabolic structured kinetic model for xanthan production. Enzym Microb Technol 0229(June 1997):75–82

  32. Zabot GL, Mecca J, Mesomo M, Silva MF, Prá VD, de Oliveira D, Oliveira JV, Castilhos F, Treichel H, Mazutti MA (2011) Hybrid modeling of xanthan gum bioproduction in batch bioreactor. Bioprocess Biosyst Eng 34(8):975–86. doi:10.1007/s00449-011-0548-5

  33. Faria S, Vieira PA, Resende MM, Franca FP, Cardoso VL (2009) A comparison between shaker and bioreactor performance based on the kinetic parameters of xanthan gum production. Appl Biochem Biotechnol 156:475–488. doi:10.1007/s12010-008-8485-8

    Article  CAS  Google Scholar 

  34. Weiss RM, Ollis DF (1980) Extracellular microbial polysaccharides (1). Substrate, biomass and product kinetics equation from xanthan gum fermentations. Biotechnol Bioeng 1980(22):859–873

    Article  Google Scholar 

  35. Hsu C-H, Lo YM (2003) Characterization of xanthan gum biosynthesis in a centrifugal, packed-bed reactor using metabolic flux analysis. Process Biochem 38(11):1617–1625. doi:10.1016/S0032-9592(03)00054-21

    Article  CAS  Google Scholar 

  36. Zabot GL, Silva MF, De Marsillac L, Foletto EL, Jahn SL, Pra D, Oliveira JV, Mazutti MA (2012) Simulation of the xanthan gum production in continuous fermentation systems. Biocatal Agric Biotechnol 1:301–308. doi:10.1016/j.bcab.2012.08.002

    CAS  Google Scholar 

  37. Rogovin P, Silman RW (1970) Continuous fermentation to produce xanthan biopolymer: laboratory investigation. Biotechnol Bioeng 12:75–84

    Article  Google Scholar 

  38. Letisse F, Lindley ND, Roux G (2003) Development of a phenomenological modeling approach for prediction of growth and xanthan gum production using Xanthomonas campestris. Biotechnol Prog 19(3):822–827. doi:10.1021/bp0257168

    Article  CAS  Google Scholar 

  39. Garcia-Ochoa F, Santos VE, Alcon A (2004) Chemical structured kinetic model for xanthan production. Enzym Microb Technol 35(4):284–292. doi:10.1016/j.enzmictec.2003.11.024

  40. Vorhölter F-J et al (2008) The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134(1–2):33–45. doi:10.1016/j.jbiotec.2007.12.013

    Article  Google Scholar 

  41. Kim S-Y, Lee B-M, Cho J-Y (2010) Relationship between glucose catabolism and xanthan production in Xanthomonas oryzae pv. oryzae. Biotechnol Lett 32(4):527–531. doi:10.1007/s10529-009-0193-0

    Article  CAS  Google Scholar 

  42. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill, New York

  43. Silman RW, Rogovin P (1972) Continuous fermentation to produce xanthan biopolymer: effect of dilution rate. Biotechnol Bioeng 15:23–31

    Article  Google Scholar 

  44. Jana AK, Ghosh P (1995) Xanthan biosynthesis in continuous culture: citric acid as an energy source. J Ferment Bioeng 80(5):485–491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arumugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, P., Arumugam, A. & Ponnusami, V. Modeling and steady state simulation: production of xanthan gum from sugarcane broth. Bioprocess Biosyst Eng 38, 49–56 (2015). https://doi.org/10.1007/s00449-014-1242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1242-1

Keywords

Navigation