Skip to main content
Log in

Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was selected because of its high affinity for xylose and was codon-optimized for functional expression in C. tropicalis. The codon-optimized gene was placed under the control of the GAPDH promoter and was integrated into the genome of C. tropicalis strain LXU1 which is xyl2-disrupted and NXRG (codon-optimized Neurospora crassa xylose reductase) introduced. The xylose uptake rate was increased by 37–73 % in the transporter expression-enhanced strains depending on the glucose/xylose mixture ratio. The recombinant strain LXT2 in 500-mL flask culture using glucose/xylose mixtures showed a xylose uptake rate that was 29 % higher and a xylitol volumetric productivity (1.14 g/L/h) that was 25 % higher than the corresponding rates for control strain LXU1. Membrane protein extraction and Western blot analysis confirmed the successful heterologous expression and membrane localization of the xylose transporter in C. tropicalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology 10:894–898

    Article  CAS  Google Scholar 

  2. Kim SY, Kim JH, Oh DK (1998) Effect of redox potential on xylitol production by Candida tropicalis. Food Sci Biotechnol 7:282–285

    Google Scholar 

  3. Emodi A (1978) Xylitol: its properties and food application. Food Technol 32:20–32

    Google Scholar 

  4. Werpy T, Petersen G, Aden A, Bozel J, Holladay J, White J, Manhein A, Elliot D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L, Kelly S (2004) Top value added chemicals from biomass. US DOE Biomass Program

  5. Kim JH, Han KC, Koh YH, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol 29:16–19

    Article  CAS  Google Scholar 

  6. Oh DK, Kim SY, Kim JH (1998) Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol Bioeng 58:440–444

    Article  CAS  Google Scholar 

  7. Ko BS, Kim J, Kim JH (2006) Production of xylitol from d-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72:4207–4213

    Article  CAS  Google Scholar 

  8. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hagerdal B, Penttila M, Kerasnen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:1090–1095

    Article  CAS  Google Scholar 

  9. Kim YS, Kim SY, Kim JH, Kim SC (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences. J Biotechnol 67:159–171

    Article  CAS  Google Scholar 

  10. Ghindea R, Csutak O, Stoica I, Tanase A-M, Vassu T (2010) Production of xylitol by yeasts. Roum Biotechnol Lett 15:5217–5222

    CAS  Google Scholar 

  11. Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292

    Article  CAS  Google Scholar 

  12. Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    Article  CAS  Google Scholar 

  13. Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191

    Article  CAS  Google Scholar 

  14. Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883

    Article  CAS  Google Scholar 

  15. Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS (2006) Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem 41:2333–2336

    Article  CAS  Google Scholar 

  16. Katahira S, Ito M, Takema H, Fugita Y, Tasino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43:115–119

    Article  CAS  Google Scholar 

  17. Ronald EH, Nasib Q, Stephen RH, Michael AC (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80:675–684

    Article  Google Scholar 

  18. Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35:191–198

    Article  CAS  Google Scholar 

  19. Ohama T, Suzuki T, Mori M, Osawa S, Ueda T, Watanabe K, Nakase T (1993) Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21:4039–4045

    Article  CAS  Google Scholar 

  20. Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188

    Article  CAS  Google Scholar 

  21. Ko BS, Rhee CH, Kim JH (2006) Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Biotechnol Lett 28:1159–1162

    Article  CAS  Google Scholar 

  22. Subtil T, Boles E (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5:14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2011-0016840). We thank Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hoe Kim.

Additional information

W. Y. Jeon and W. Y. Shim contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, W.Y., Shim, W.Y., Lee, S.H. et al. Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess Biosyst Eng 36, 809–817 (2013). https://doi.org/10.1007/s00449-013-0907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0907-5

Keywords

Navigation