Skip to main content
Log in

Cloning and characterization of a thermostable endo-arabinanase from Phanerochaete chrysosporium and its synergistic action with endo-xylanase

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Putative arabinanase (PcARA) was cloned from cDNA of Phanerochaete chrysosporium. The gene sequencing indicated that PcARA consisted of 939 nucleotides that encodes for 312 amino acid arabinanase-polypeptide chain, including a signal peptide of 19 amino acids. Three-dimensional homology indicated that this enzyme is a five-bladed β-propeller, belonging to glycosidase family 43 and its secondary structure is consisted of 24 β-sheets. The PcARA-cDNA was expressed in Pichia pastoris using pPICZαC. SDS-PAGE of purified arabinanase showed a single band of 33 kDa that is very close to theoretical molecular mass of 33.9 kDa calculated by its amino acid content. Recombinant arabinanase (rPcARA) exhibited maximum activity at pH and temperature of 5.0 and 60 °C, respectively. End-product analysis of debranched arabinan hydrolysis by thin-layer chromatography indicated that rPcARA acted as endo-type. The synergistic action of rPcARA with recombinant xylanase resulted in 72 and 9.3 % release of total soluble sugar of arabinoxylan and NaOH-pretreated barley straw, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  2. Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  Google Scholar 

  3. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  Google Scholar 

  4. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228

    Article  CAS  Google Scholar 

  5. Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, Taylor EJ, Gilbert HJ, Davies GJ (2002) Cellvibrio japonicus alpha-l-arabinanase 43A has a novel five-blade beta-propeller fold. Nat Struct Biol 9(9):665–668

    Article  CAS  Google Scholar 

  6. Pons T, Naumoff DG, Martínez-Fleites C, Hernández L (2004) Three acidic residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Proteins 54(3):424–432

    Article  CAS  Google Scholar 

  7. Alhassid A, Ben-David A, Tabachnikov O, Libster D, Naveh E, Zolotnitsky G, Shoham Y, Shoham G (2009) Crystal structure of an inverting GH 43 1,5-alpha-l-arabinanase from Geobacillus stearothermophilus complexed with its substrate. Biochem J 422(1):73–82

    Article  CAS  Google Scholar 

  8. Sakamoto T, Inui M, Yasui K, Tokuda S, Akiyoshi M, Kobori Y, Nakaniwa T, Tada T (2012) Biochemical characterization and gene expression of two endo-arabinanases from Penicillium chrysogenum 31B. Appl Microbiol Biotechnol 93(3):1087–1096

    Article  CAS  Google Scholar 

  9. Saha BC, Bothast RJ (1999) Production of 2,3-butanediol by newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 52(3):321–326

    Article  CAS  Google Scholar 

  10. Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6(1):008–020

    CAS  Google Scholar 

  11. Seiboth B, Metz B (2011) Fungal arabinan and l-arabinose metabolism. Appl Microbiol Biotechnol 89(6):1665–1673

    Article  CAS  Google Scholar 

  12. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter J-C, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695–700

    Article  CAS  Google Scholar 

  13. Hori C, Igarashi K, Katayama A, Samejima M (2011) Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose. FEMS Microbiol Lett 321(1):14–23

    Article  CAS  Google Scholar 

  14. Adav SS, Ravindran A, Sze SK (2012) Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. J Proteomics 75(5):1493–1504

    Article  CAS  Google Scholar 

  15. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    Article  CAS  Google Scholar 

  16. Wymelenberg AV, Sabat G, Martinez D, Rajangam AS, Teeri TT, Gaskell J, Kersten PJ, Cullen D (2005) The Phaenerochaete chrysosporium secretom: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 118:17–34

    Article  Google Scholar 

  17. Vasu P, Bauer S, Savary BJ (2012) Cloning and expression of hemicellulases from Aspergillus nidulans in Pichia pastoris. In: Lorence A (ed) Recombinant gene expression: reviews and protocols, vol 824. Methods in Molecular Biology, 3rd edn. Humana Press, New York, pp 433–450

  18. Sambrook S, Russell DW (2003) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  19. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4(3):363–371

    Article  CAS  Google Scholar 

  20. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  Google Scholar 

  21. Grinna LS, Tschopp JF (1989) Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast. Yeast 5(2):107–115

    Article  CAS  Google Scholar 

  22. Hong MR, Park CS, Oh DK (2009) Characterization of a thermostable endo-1,5-alpha-l-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnol Lett 31(9):1439–1443

    Article  CAS  Google Scholar 

  23. Leal TF, de Sá-Nogueira I (2004) Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol Lett 241(1):41–48

    Article  CAS  Google Scholar 

  24. Skjøt M, Kauppinen S, Kofod LV, Fuglsang C, Pauly M, Dalbøge H, Andersen LN (2001) Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous expression in A. oryzae and tobacco. Mol Genet Genomics 265(5):913–921

    Article  Google Scholar 

  25. Inácio JM, de Sá-Nogueira I (2008) Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J Bacteriol 190(12):4272–4280

    Article  Google Scholar 

  26. Goddard-Borger ED, Carapito R, Jeltsch JM, Phalip V, Stick RV, Varrot A (2011) α-l-Arabinofuranosylated pyrrolidines as arabinanase inhibitors. Chem Commun 47(34):9684–9686

    Article  CAS  Google Scholar 

  27. McKie VA, Black GW, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ (1997) Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exo- mode of action. Biochem J 232(Pt 2):547–555

    Google Scholar 

  28. Huy ND, Kim SW, Park SM (2011) Heterologous expression of endo-1,4-beta-xylanase C from Phanerochaete chrysosporium in Pichia pastoris. J Biosci Bioeng 111(6):654–657

    Article  CAS  Google Scholar 

  29. Sørensen HR, Pedersen S, Jørgensen CT, Meyer AS (2007) Enzymatic hydrolysis of wheat arabinoxylan by a recombinant minimal enzyme cocktail containing beta-xylosidase and novel endo-1,4-beta-xylanase and alpha-l-arabinofuranosidase activities. Biotechnol Prog 23(1):100–107

    Article  Google Scholar 

  30. García-Aparicio MP, Ballesteros M, Manzanares P, Ballesteros I, González A, Negro MJ (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 137–140(1–12):353–365

    Article  Google Scholar 

  31. Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104(3):471–482

    Article  CAS  Google Scholar 

  32. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30(6):1447–1457

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Technology Development Program for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. In partly, this research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0015666). We thank the Research Institute of Bioindustry at Chonbuk National University for kindly providing the facilities for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Moon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huy, N.D., Thiyagarajan, S., Choi, YE. et al. Cloning and characterization of a thermostable endo-arabinanase from Phanerochaete chrysosporium and its synergistic action with endo-xylanase. Bioprocess Biosyst Eng 36, 677–685 (2013). https://doi.org/10.1007/s00449-013-0891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0891-9

Keywords

Navigation