Skip to main content
Log in

Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag-NPs) are known to have inhibitory and fungicidal effects. Resistance against fungal infection has emerged as a major health problem in recent years, which needs great and immediate concern. Here, we report the extracellular biological synthesis of silver nanoparticles through a simple green route approach using a marine mangrove (Rhizophora mucronata) and silver nitrate. Aqueous extract of marine mangrove helped in reduction and was used as capping agent in biological synthesis. Nanoparticles were characterized using microscopy and spectroscopy techniques such as HRTEM, UV–Vis absorption spectroscopy and FTIR spectroscopy. X-ray diffraction analysis showed that the nanoparticles had face centered cubic structure with crystalline nature. FTIR spectroscopy showed the presence of different functional groups, such as hydroxyl and carbonyl, involved in the synthesis of nanoparticles. The antifungal activity of fluconazole and itraconazole was enhanced against the tested pathogenic fungi in the presence of Ag-NP and confirmed from increase in fold area of inhibition. This environmentally friendly method of biological synthesis can be easily integrated for various medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7:3162–3165

    Google Scholar 

  2. Petit C, Lixon P, Pileni MP (1993) J Phys Chem 97:12974–12983

    Article  CAS  Google Scholar 

  3. Heath JR, Knobler CM, Leff DV (1997) J Phys Chem B 101:189–197

    Article  CAS  Google Scholar 

  4. Liz-Marzán LM, Lado-Tourino I (1996) Langmuir 12:1589–3585

    Article  Google Scholar 

  5. Komarneni S, Newalkar D, Li B, Katsuki H, Bhalla AS (2002) Langmuir 18:5959–5962

    Article  CAS  Google Scholar 

  6. Santos IP, Liz-Marzán LM (2002) Langmuir 18:2888–2894

    Article  Google Scholar 

  7. Harfenist SA, Wang ZL, Alvarez MM, Vezmar I, Whetten RL (1996) J Phys Chem 100:13904–13910

    Article  CAS  Google Scholar 

  8. Stiger RM, Gorer S, Craft B, Penner PM (1999) Langmuir 15:790–798

    Article  CAS  Google Scholar 

  9. Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Langmuir 18:3352–3357

    Article  CAS  Google Scholar 

  10. Itakura T, Torigoe K, Esumi K (1995) Langmuir 11:4129–4134

    Article  CAS  Google Scholar 

  11. Abid JP, Wark AW, Brevet PF, Girault HH (2002) Chem Commun 792–793

  12. Brust M, Kiely CJ (2002) Colloids Surf A Physicochem Eng Aspects 202:175–186

    Article  CAS  Google Scholar 

  13. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarani SK et al (2003) Nanotechnology 14:95

    Article  CAS  Google Scholar 

  14. Merroun M, Rossberg A, Hennig C, Scheinost AC, Selenska-Pobell (2007) Mater Sci Eng C 27:188–192

    Article  CAS  Google Scholar 

  15. Shiv Shankar S, Rai A, Ahmad A, Sastry M (2004) J Colloid Interf Sci 275:496–502

    Article  Google Scholar 

  16. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  17. Shankar SS, Ahmad A, Sastry M (2003) Biotechnol Prog 19:1627–1631

    Article  CAS  Google Scholar 

  18. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Nat Mater 3:482–488

    Article  CAS  Google Scholar 

  19. Rai A, Singh A, Ahmad A, Sastry M (2006) Langmuir 22:736–741

    Article  CAS  Google Scholar 

  20. Rai A, Chaudhary M, Ahmad A, Bhargava S, Sastry M (2007) Mater Res Bull 42:1212–1220

    Article  CAS  Google Scholar 

  21. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Biotechnol Prog 22:577–583

    Article  CAS  Google Scholar 

  22. Huang H, Yang X (2004) Carbohydr Res 339:2627–2631

    Article  CAS  Google Scholar 

  23. Klaus-Joerger T, Joerger R, Olsson E, Granqvist C (2001) Trends Biotechnol 19(1):15–20

    Article  CAS  Google Scholar 

  24. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  25. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Colloids Surf B 28(4):313–318

    Article  CAS  Google Scholar 

  26. Mukherjee P, Senapati S, Mandal D, Ahmad A, Islam Khan M, Kumar R, Sastry M (2002) Chem Biochem 3:461–463

    CAS  Google Scholar 

  27. Ahmad A, Senapati S, Islam Khan M, Kumar R, Sastry M (2003) Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  28. Ankamwar B, Chaudhary M, Sastry M (2005) Synth React Inorg Metal Org Nano Metal Chem 35:19–26

    Article  CAS  Google Scholar 

  29. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) J Nanosci Nanotechnol 5:1665–1671

    Article  CAS  Google Scholar 

  30. Bar H, Bhui DKr, Sahoo GP, Sarkar P, De SP, Misra A (2009) Colloid Surf A 339:134–139

    Article  CAS  Google Scholar 

  31. Vilchis-Nestor AR, Sanchez-Mendieta V, Camacho-Lopez MA, Gomez-Espinosa RM, Camacho-Lopez MA, Arenas-Alatorre JA (2008) Mater Lett 62:3103–3105

    Article  CAS  Google Scholar 

  32. Wright GD (2000) Resisting resistance: new chemical strategies for battling superbugs. Chem Biol 7:127–132

    Article  Google Scholar 

  33. Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470

    Article  CAS  Google Scholar 

  34. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC et al (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134

    Article  Google Scholar 

  35. Cho KH, Park JE, Osaka T, Park SG (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960

    Article  CAS  Google Scholar 

  36. Gade AK, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Article  Google Scholar 

  37. Shahverdi AR, Fakhimi A, Shahverdi HR, Minanian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against S. aureus and E. coli. Nanomedicine (NBM) 3:168–171

    Article  CAS  Google Scholar 

  38. Simkiss K, Wilbur KM (1989) Biomineralization: cell biology and mineral deposition. Academic Press, New York, p 337

    Google Scholar 

  39. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    Article  CAS  Google Scholar 

  40. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Colloids Surf B 76:50–56

    Article  CAS  Google Scholar 

  41. Ravichandran V, Tiah ZX, Subashini G, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) J Saudi Chem Soc 15:113–120

    Article  Google Scholar 

  42. Andreescu D, Eastman C, Balantrapu K, Goia DV (2007) J Mater Res 22:2488–2496

    Article  CAS  Google Scholar 

  43. Soisuwan S, Warisnoicharoen W, Lirdprapamongkol K, Svasti J (2010) Am J Appl Sci 7:1038–1042

    Article  CAS  Google Scholar 

  44. Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T (1998) Langmuir 14:4559–4565

    Article  CAS  Google Scholar 

  45. Mohan YM, Raju KM, Sambasivudu K, Singh S, Sreedhar B (2007) J Appl Polym Sci 106:3375–3381

    Article  CAS  Google Scholar 

  46. Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grubel G (2005) Langmuir 21:1931–1936

    Article  CAS  Google Scholar 

  47. Magudapatty P, Gangopadhyayrans P, Panigrahi BK, Nair KGM, Dhara S (2001) Phys B 299:142–146

    Article  Google Scholar 

  48. Song JY, Kim BS (2008) Bioprocess Biosyst Eng 32:79–84

    Article  Google Scholar 

  49. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  Google Scholar 

  50. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG et al (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was accomplished with the funds provided by the Indian Council of Medical Research (ICMR), Government of India, in the form of research fellowship. We are thankful to Prof. Dr. A.K. Kumaraguru for his sincere support in carrying out the research. We are also thankful to (AIRF Laboratory) Jawaharlal Nehru University, New Delhi, India for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Kumar, M., Kalaivani, R. et al. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng 36, 407–415 (2013). https://doi.org/10.1007/s00449-012-0797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0797-y

Keywords

Navigation